
Cheap Talk, Reinforcement Learning and the
Emergence of Cooperation

J. McKenzie Alexander
Department of Philosophy, Logic and Scientific Method

London School of Economics and Political Science

23 May 2015

Cheap talk has often been thought incapable of supporting the emergence of co-
operation because costless signals, easily faked, are unlikely to be reliable (Zahavi
and Zahavi, 1997). I show how, in a social network model of cheap talk with
reinforcement learning, cheap talk does enable the emergence of cooperation,
provided that individuals also temporally discount the past. This establishes
one mechanism that suffices for moving a population of initially uncooperative
individuals to a state of mutually beneficial cooperation even in the absence of
formal institutions.

1. The many roads to cooperation. Explaining how cooperative behaviour —
or pro-social behaviour, more generally — might emerge has become a cottage
industry. Mechanisms which have been shown to work, in certain contexts,
include the following: reliable signals, or the “secret handshake” (Robson, 1990);
costly signals, a.k.a. “the handicap principle” (Zahavi, 1975; Zahavi and Zahavi,
1997); punishment (Boyd and Richerson, 1992; Gintis, 2000); compliance with
social norms (Axelrod, 1986; Bowles and Gintis, 2004; Bicchieri, 2005); correlated
interactions induced by social structure (Nowak and May, 1993; Ellison, 1993;
Skyrms, 2003; Alexander, 2007); reciprocal altruism (Trivers, 1971); and group
selection (Sober and Wilson, 1998). This list is by no means exhaustive.

Some of these mechanisms support the emergence of cooperative behaviour
simply because the mechanism is considerably flexible it terms of what it may
yield; recall, after all, that the title of Boyd and Richerson’s paper is “punishment
allows the evolution of cooperation (or anything else) in sizable groups”. Other
mechanisms have more limited scope. Social norms require people to not only
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know the behaviour of others, and the underlying rule which governs their
behaviour, but also other people’s expectations. And local interaction models,
although quite effective in supporting cooperation (Nowak and May, 1993),
fairness (Alexander and Skyrms, 1999), and trust (Skyrms, 2001, 2003), face
greater difficulty explaining the behaviour of agents in the ultimatum game.

Finally, the mechanism of costly signals seems to have the most limited scope
of all the methods listed above. Why? Zahavi argued signals must be costly
in order to ensure that they are reliable, or honest, for otherwise such signals
could be easily forged by opportunistic agents. Yet forging signals would only
be problematic in cases involving altruistic behaviour, such as the Prisoner’s
Dilemma or the Sir Philip Sidney game (Maynard Smith, 1991) — games where
“cooperating” leaves the agent vulnerable to exploitation. In a pure coordination
game, like the Driving Game, or an impure coordination game, like Battle of the
Sexes, or even a trust game like the Stag Hunt, an honest signal need not be costly.
In these games, receipt of an honest signal may increase the chance of arriving at a
Pareto-optimal Nash equilibrium.

Furthermore, some have challenged whether signals need be costly in order
to be effective even in cases of altruistic behavior. In series of three articles, Carl
Bergstrom and Michael Lachmann consider the effects of costly versus costless
signals in the Sir Philip Sidney game. They find that, in some cases, costly
signalling can be so costly that individuals are worse off than not being able to
signal at all; they also show that honest cost-free signals are possible under a wide
range of conditions. Similarly, Huttegger and Zollman (2010) show — again for
the Sir Philip Sidney game — that the costly signalling equilibrium turns out
to be less important for understanding the overall evolutionary dynamics than
previously considered.

In what follows, I contribute to the critique of the importance of costly signals
for the emergence of cooperation, but using a rather different approach than
what has previously been considered. In section 2, I present a general model of
reinforcement learning in network games, which builds upon the work of Skyrms
(2010) and Alexander (2007). Section 3 introduces the possibility of costless cheap
talk into this model, as well as the possibility of conditionally responding to
received signals. I then show that — in accordance with the Handicap Principle
— cooperative behaviour does not emerge. However, in section 4 I show that
when cheap talk and reinforcement learning is combined with discounting the past,
that costless signalling enables individuals to learn to cooperate despite originally
settling upon a “norm” of defecting.

2. Reinforcement learning in network games. If one were to identify one
general trend in philosophical studies of evolutionary game theory over the past
twenty years, it would be a movement towards ever-more limited models of
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boundedly rational agents. Contrast the following: in The Dynamics of Rational
Deliberation, Skyrms modelled interactions between two individuals who updated
their beliefs using either Bayesian or Brown-von Neumann-Nash dynamics, both
fairly cognitively demanding. In his most recent book Signals: Evolution, Learning
& Information, Skyrms almost exclusively employs reinforcement learning in his
simulations.

This strategy of attempting to do more with less has some advantages. For
one, in real life we rarely know the actual payoff structure of the games we
play. Without knowing the payoff matrix, we cannot even begin to calculate
the expected best-response (to say nothing of the difficulty of trying to attribute
degrees of belief to our opponents). Reinforcement learning doesn’t require
that agents know the payoff matrix.1 Second, even a relatively simple learning
rule like imitate-the-best requires knowledge of two things: the strategy used
by our opponents, and the payoffs they received. Even if we set aside worries
about interpersonal comparison of utilities, there is still the problem that the
behavioural outcome of different strategies can be observationally the same — so
which strategy does an agent adopt using imitate-the-best?2

Another advantage of reinforcement learning is that several different varieties
have been studied empirically, with considerable efforts made to develop descrip-
tively accurate models of human learning. Two important variants are due to
Bush and Mosteller (1951, 1955) and Roth and Erev (1995). Let us consider each
of these in turn.

Suppose that there are N actions available, and pi (t ) denotes the probability
assigned to action i at time t . Bush-Mosteller reinforcement learning makes
incremental adjustments to the probability distribution over actions so as to
move the probability of the reinforced action towards one. The speed with which
this occurs is controlled by a learning parameter a.3 If the kth action is reinforced,
the new probability pk(t + 1) is just pk(t )+ a(1− pk(t )). All other probabilities
are decremented by the amount 1

N−1a(1 − pk(t )) in order to ensure that the
probabilities sum to 1. One point to note is that this means Bush-Mosteller
reinforcement learning does not take into account past experience: if you assign
probability 3

4 to an action, and reinforce, your probability distribution shifts

1Although, given enough experience and memory, an agent would be able to reconstruct at
least her side of the payoff matrix.

2Consider the ultimatum game where an agent in the role of Receiver can take one of four
actions: Accept always, Accept if fair, Reject if fair, and Reject always. (In the absence of acceptance
thresholds, these are the four logical possibilities.) Suppose I make you an unfair offer and you
reject. Suppose that I now notice that you did the best of all my opponents. What acceptance
strategy should I use?

3In their original paper, Bush and Mosteller also included a parameter representing factors
which decreased the probability of actions. For simplicity, I omit this.
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by the same amount it would if you assigned probability 3
4 to an action after a

thousand trials.
Roth and Erev reinforcement learning, in contrast, is a form of reinforcement

learning which take past experience into account. It can be thought of as a
Pólya urn: each agent has an urn filled with an initial assortment of coloured
balls representing the actions available. An agent draws a ball, performs the
corresponding act, and then reinforces by adding a number of similarly coloured
balls based on the reward of the act. More generally, an agent may assign arbitrary
positive-valued weights to each act, choosing an act with probability proportional
to its weight. This latter representation drops the requirement that the weights
assigned to acts be integral-valued, which allows one to incorporate additional
aspects of human psychology into the model, such as discounting the past.

To see how Roth-Erev takes experience into account, suppose that the reward
associated with an act is always one, and that there are exactly two available acts.
If the agent initially starts with an urn containing a red ball representing act 1
and a green ball representing act 2, then the initial probability of each act is 1

2 .
Reinforcing act 1 will cause the urn to have two red balls and one green ball, so
the new probability of act 1 is 2

3 . But now suppose that after 20 trials the urn
contains exactly 10 red balls and 10 green balls. Reinforcing act 1, at this point,
causes the probability of act 1 to increase to only 11

20 .
Roth-Erev reinforcement learning has some nice theoretical properties, aside

from the limited epistemic requirements it imposes on agents. Consider the
idealised problem of choosing a restaurant in a town where you don’t speak
the language. The challenge you face is the trade-off between exploration and
exploitation. You don’t want to settle for always eating at the first restaurant
that serves you a decent meal. However, you also don’t want to keep sampling
indefinitely, so that you never fixate upon a single restaurant.4 How should
you learn from your experience so as to avoid both of these two errors? If you
approach the restaurant problem as a Roth-Erev reinforcement learner, with the
urn initially containing one ball for each restaurant,5 then in the limit you will
converge to eating at the best restaurant in town, always.6 Because of these nice
theoretical properties, I shall concentrate exclusively on Roth-Erev reinforcement
learning in what follows.

Now consider the following basic model: let P = {a1, . . . ,an} be a population
of boundedly rational agents situated within a social network (P, E), where E is a
set of undirected edges. This network represents the structure of the population,

4Let us assume that the restaurant all serve a sufficiently generic cuisine so that questions of
taste or mood don’t affect your choice. Let us also assume that each chef botches it, on occasion,
so that you cannot solve the problem by straightforward exhaustive sampling.

5Although this assumption is not, strictly speaking, required.
6This was shown by Wei and Durham (1978).
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in the sense that two agents interact and play a game if and only if they are
connected by an edge.

For simplicity, let us assume that the underlying game is symmetric. (This
ensures we do not need to worry whether a player takes the role of Row or
Column, potentially having different strategy sets.) Each agent begins life with a
single Pólya urn containing one ball of a unique color for each of her possible
strategies.

Each iteration, the pairwise interactions occur asynchronously and in a ran-
dom order. When two agents interact, each reaches into his or her urn and draws
a ball at random, with replacement. Each agent plays the strategy corresponding
to the ball drawn from his or her urn, receiving a payoff. After the interaction,
both agents reinforce by adding additional balls to their urn, the same colour as
the one drawn, where the number of new balls added is determined by the payoff
amount.7

Figure 1 illustrates the outcome of Roth-Erev reinforcement learners on three
different social networks: the ring, wheel, and a grid. The underlying game was
the canonical Prisoner’s Dilemma with payoffs as indicated. The probability of
agents choosing either Cooperate or Defect is displayed as a pie chart, with the
white region representing the probability of cooperating and the black region
representing the probability of defecting. Each action had an initial weight of 10,
which prevented the outcome from the first round of play from severely skewing
the probability of future actions.

This result is in accordance with the result of Beggs (2005), who showed that
in a 2× 2 game the probability a Roth-Erev reinforcement learner will play a
strictly dominated strategy converges to zero. The one difference between this
model and that of Beggs is that, here, the asynchronous dynamics allows two
opponents to play a game with the collective urn configuration in a state not
obtainable in Beggs’s framework. That is, if a player A is connected to B and C
by two edges, and A first interacts with B , then A — who will have reinforced
after his interaction with B — may interact with C whose urn is in the same state
as at the end of the previous iteration. However, as figure 1 illustrates, this has no
real difference in the long-term convergence behaviour.

3. Cheap talk and reinforcement learning in networked games. In game
theory, “cheap talk” refers to the possibility of players exchanging meaningless
signals before choosing a strategy in a noncooperative game. Since players do
not have the capability to make binding agreements, signal exchange was initially
thought to be irrelevant for purposes of equilibrium selection in one-shot games.
However, cheap-talk is more interesting than it might initially appear. In the case

7For simplicity, I assume that all payoffs are nonnegative integers.
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(a) Initial configuration (b) 100,000 iterations

(c) Initial configuration (d) 100,000 iterations

(e) Initial configuration (f) 100,000 iterations

Figure 1: Effective convergence to Defect in the Prisoner’s Dilemma played on
three different structures. Payoff matrix: T = 4, R = 3, P = 2, S = 1 with an
initial weight of 10 on the actions Cooperate and Defect. The nodes in the graph
are pie charts showing a player’s probability of choosing Cooperate (white) or
Defect (black) from the urn.
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of evolutionary game theory, (Skyrms, 2003, pp. 69–70) shows how cheap talk in
the Stag Hunt creates a new evolutionarily stable state which does not exist in
the absence of cheap talk.

Consider, then, an extension of the model presented in section 2 which in-
corporates a pre-play round of cheap talk on which players may condition their
response. Since there seems little reason to restrict the number of signals a player
may send, let’s model the cheap-talk exchange using the method of signal inven-
tion from Skyrms (2010), based upon Hoppe-Pólya urns. Each player begins with
a signalling urn containing a single black ball, known as the mutator.8 When the
mutator is drawn, the player chooses a new ball of a unique colour and sends that
as the signal. Upon receipt of a signal, a player conditions her response upon the
signal as follows: if this is the first time that the signal was received, the player cre-
ates a new response urn (a Pólya urn) labelled with that signal. The new response
urn initially contains one ball of a unique colour for each strategy available to the
player. A strategy is selected at random by sampling from the response urn with
replacement. The game is played, after which reinforcement occurs; unlike the
previous model, though, here both the signalling and response urns are reinforced,
with the amount of reinforcement determined by the payoff. If the signal received
by the player had been received previously, the player selects a strategy the same
way, but uses the already-existing response urn labelled with that signal. Hence,
the probability of choosing any particular strategy for a received signal will vary
in a path-dependent way based on previous reinforcement.

Figure 2 illustrates aggregate results from 100 simulations for a simple cycle
graph consisting of five agents. Cheap talk, here, makes essentially no difference in
the long-term behaviour of the population: people still converge upon defection.9

This should come as no surprise: the method of incorporating cheap talk means
that a single individual, instead of playing the Prisoner’s Dilemma with a single
Pólya urn, can be thought of as being “partitioned” into several individuals each
of whom play the Prisoner’s Dilemma with their own Pólya urns. Since we know
that Roth-Erev reinforcement learning (which is what the Pólya urn models) learns
to avoid playing strictly dominated strategies in the limit, so will people using
Roth-Erev reinforcement learning when they have the ability to conditionally
respond to cheap talk.

4. Discounting, cheap talk, and the emergence of cooperation. It has been
known for some time that models of cheap talk with signal invention often benefit
from including a method of pruning the number of signals created. In Lewis

8So called because Hoppe-Pólya urns were originally used as a model of neutral evolution.
9One might note that figure 2 still shows a frequency of cooperation of about 5% after 10,000

rounds of play. This apparent discrepancy is simply due to the smaller number of iterations
involved.
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Figure 2: Aggregate results of 100 simulations featuring conditional response to
cheap-talk and reinforcement learning, on a cyclic network with five agents. The
payoff matrix for the Prisoner’s Dilemma had T = 4, R= 3, P = 2 and S = 1.

sender-receiver games, for example, signal invention and reinforcement learning
lead to efficient signalling systems, but with the side-effect of there being infinitely
many signals in the limit (see Skyrms, 2010). However, Alexander et al. (2012)
later showed that, if the model of signal invention and reinforcement learning
is supplemented with signal “de-enforcement,” efficient — and often minimal —
signalling systems are produced. In a separate paper, also concerned with Lewis
sender-receiver games, Alexander (2014) showed that models of signal invention
and reinforcement learning in which past information is discounted avoid ex-
cessive lock-in to particular signalling systems. This means that individuals are
able to coordinate on efficient signalling systems yet, at the same time, respond
rapidly to external stochastic shocks which change what the “correct” action is.

Consider, then, the model from the previous section with one final addition:
each player has a discount factor δ that is applied to the weights of the signalling
and response urns at the start of each iteration.10 Since a seldomly-used signal will

10At this point, it becomes necessary to reinterpret the urn model. Instead of thinking of
discrete balls in an urn, think instead of non-negative, real-valued numeric weights attached to
signals (or strategies). The probability of selecting a signal (or strategy) to use is proportional to
its weight after renormalisation; that is, let wi denote the weight attached to signal (or strategy) i .
Then the probability of selecting i is just wi

∑

j w j
. Discounting the past corresponds to multiplying

each of the weights by the discount factor δ before reinforcement occurs.
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(a) 100 iterations (b) 1100 iterations

(c) 2100 iterations (d) 10,000 iterations

Figure 3: The emergence of cooperation in the Prisoner’s Dilemma under cheap-
talk, reinforcement learning, and discounting the past. The discount factor used
was 0.95 and the cutoff threshold was 0.01.

have its weight eroded over time, let us introduce a cutoff-threshold τ such that, if
the signal’s weight drops below τ, it is eliminated entirely.11 Finally, although the
weights in the response urns are discounted, the cutoff threshold does not apply
to them.12

With these adjustments to the model, we find a striking result: individuals
rapidly move to defection, in the beginning, but then learn to cooperate over time.
The combination of signal invention, reinforcement learning, and discounting

11One technical complication lies with how to treat the mutator. If the mutator ball were
eliminated, then signal invention would stop. Since there seems no principled reason to allow
signal invention for only a short period of time (which is what would happen, since the mutator
is never reinforced), in what follows it is assumed that the mutator is exempt from discounting.

12The reason why is as follows: strategies, here, stand for real, physical possibilities of action.
One cannot simply eliminate a real, physical possibility in the same way one can eliminate an
arbitrary constructed convention, like a signal.
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Figure 4: The emergence of cooperation, aggregate results for 1,000 simulations
of 10,000 iterations each on a variety of networks.

the past enables the population to crawl out of the collectively suboptimal state
in which they initially find themselves. Figure 3 illustrates this for a population
of 12 agents on a cyclic network.

Figure 4 shows that the phenomenon of agents starting off with defection, and
then learning to cooperate, occurs quite generally. Each line shows the aggregate
results of 1,000 simulations, where the y-value at the x th iteration is the frequency
of cooperative acts across all 1,000 simulations at that iteration.13 The graph
topology has a notable effect on the speed with which cooperation emerges, but
what is striking in light of the earlier results is how often cooperation happens.
Recall that it was a theorem of Beggs (2005) that Roth-Erev reinforcement learning
would play a strictly dominated strategy with a probability converging to zero in
the limit.

Why does cooperation emerge in the presence of discounting, but not other-
wise? It seems to involve the following interaction of factors. Firstly, discounting
places a cap on the overall weight a signal or action can receive as a result of

13The values have been normalised to take into account the varying number of acts in a given
iteration due to the graph topology. Since a cycle of size 6 has 12 actions each iteration (two per
edge), the total number of cooperative acts at the x th iteration was divided by 1

12,000 to yield a value
in the range [0,1]. Likewise, the complete 3-ary tree of size 13 (with 24 actions per iteration), and
the 4× 4 grid graph (with 48 actions per iteration) had their aggregate values adjusted by factors
of 1

24,000 and 1
48,000 , respectively.
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reinforcement. For modest discount factors, say 95%, this means that there is
a significant chance that a new signal will be attempted at any period in time.
Secondly, suppose that a new signal is used between two agents, both of whom
cooperate. If that signal (simply through chance) is used two or three times in a
row, notice what happens: the amount of reinforcement in the default Prisoner’s
Dilemma adds 2 balls to both the signalling and response urn for the respective
signal and action. If that happened, say, three times in a row, the weights attached
to the other signals and responses would have been decreased by nearly 15%, on
top of the fact that mutual Cooperation pays twice that of mutual Defection.14

Thirdly, since the mutual Punishment payoff for the standard Prisoner’s Dilemma
used here awards 1 to each player, the maximum possible weight which could
be attached to the previously used signal would be on the order of 20, since
∑∞

k=0

�

19
20

�k
= 20, whereas the maximum possible weight for signals used to coor-

dinate Cooperation would be on the order of 40.15 Finally, when multiple signals
are available to the sender, each signal will be used less often. Since discounting
applies to each urn each iteration, that means the weights attached to actions in
unused response urns are all discounted by the same amount each iteration. This
doesn’t affect the actual probability of any action in the urn being selected the
next time the response urn is used, since δk ·wi

∑

j δk ·w j
= wi
∑

j w j
, but it does mean that

the next amount of reinforcement will have more greater effect than it would
otherwise have. The combination of these four factors, taken together, favour
the emergence of cooperation.16

5. Conclusion. On the many roads leading to cooperation, Roth-Erev rein-
forcement learning seldom appeared in cases where the cooperative outcome
required people to use a strictly dominated strategy. It has been shown here that
if the basic mechanism of Roth-Erev reinforcement learning is supplemented by
the psychologically plausible addition of temporal discounting of the past, cheap
talk and signal invention, cooperation can regularly emerge in cases where that
requires use of a strictly dominated strategy. Perhaps the most interesting and
unexpected feature of this model is that, in the short term, individuals typically

14If δ = 0.95, then δ3 = 0.857375.
15I say “on the order of” because the fact that the same signal, and response urn, may be used

along multiple edges complicates matters. If a player is incident on m edges, then the maximum
possible weight attached to a signal which is solely used for coordinating mutual Defection would
be 20m.

16Cheap talk with signal invention is an essential part of the story, for if the number of possible
signals to send did not increase over time, then the fourth observation would not apply. This
point is confirmed by simulations involving reinforcement learning, discounting the past, but no
cheap talk with signal invention: there, players converge to Defect very quickly.
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defect, but then, over time, eventually learn to cooperate. We have thus identi-
fied one formal mechanism which suffices to generate the following well-known
social phenomenon: that people, albeit initially uncooperative, may, by means of
repeated interactions over time, eventually engage in mutually beneficial coopera-
tive behaviour even in the absence of formal institutions to establish, monitor, or
police it.
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