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Evolutionary game theoretic accounts of justice attempt to explain our willingness to
follow certain principles of justice by appealing to robustness properties possessed by
those principles. Skyrms (1996) offers one sketch of how such an account might go for
divide-the-dollar, the simplest version of the Nash bargaining game, using the repli-
cator dynamics of Taylor and Jonker (1978). In a recent article, D’Arms et al. (1998)
criticize his account and describe a model which, they allege, undermines his theory.
I sketch a theory of evolutionary explanations of justice which avoids their method-
ological criticisms, and develop a spatial model of divide-the-dollar with more robust
convergence properties than the models of Skyrms (1996) and D’Arms et al. (1998).

1. Introduction. In a recent article, D’Arms, Batterman, and Górny (1998)
examine the evolutionary game theoretic account of justice suggested by Skyrms
(1996). In their discussion, they contrast Skyrms’s explanatory strategy with
that favored by contemporary evolutionary psychologists (these are the methods
of evolutionary generalism and evolutionary particularism, respectively). They
offer three criteria for evaluating evolutionary accounts of moral norms (rep-
resentativeness, robustness, and flexibility), and argue that Skyrms’s account
fairs less well than one might hope for with respect to representativeness and
robustness.

Although I agree with much of what D’Arms et al. have to say, this pa-
per challenges their conception of the structure of evolutionary explanation and
describes an evolutionary model with very robust convergence properties. In
section 3, I offer an alternative view of the structure of evolutionary explana-
tion, one in which evolutionary generalism and evolutionary particularism are
not seen as competing strategies but as complementary components of a single
schema. I argue that this conception not only avoids some of the criticisms
leveled against Skyrms, but has, as an additional advantage, the possibility of
explaining some of the normative aspects of justice. In section 4, I develop fur-
ther my spatial evolutionary model discussed in Alexander and Skyrms (1999),
and present results supporting the evolutionary game theoretic explanation of
justice.

∗I would like to thank Brian Skyrms, Penelope Maddy, and two anonymous referees for their
helpful comments and suggestions regarding an earlier draft of this paper.
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2. Evolutionary Models of Distributive Justice. As detailed discussions
of Skyrms’s model can be found elsewhere, I shall be brief in my reconstruction,
primarily emphasizing the points at which Skyrms (1996) and D’Arms et al.
(1998) differ. Both use a simplified version of the bargaining game discussed in
Nash (1950); in this game, two players must divide a good (say a cake) sliced
into N pieces. Each player decides how much of the cake she wants, in terms
of the number of slices, without communicating her choice to the other. If the
individual demands do not sum to more than the total number of slices, each
player gets what he or she desired. If the sum of individual demands exceeds
the total number of slices, each player receives nothing.

Skyrms models a population of agents using the discrete replicator dy-
namics of Taylor and Jonker (1978). According to this model, the state of the
population at a particular time t is represented by a vector 〈p0, . . . , pN 〉, where
pi ∈ [0, 1] represents the proportion of the population desiring i slices of the
cake. In the next generation, the population proportion changes according to
the formula

p′i = pi + (ei + b)/(P + b) (1)

where ei denotes the expected fitness of strategy i in the population, P the
average fitness of the population, and b the background fitness of the population.

Representing the population this way assumes an infinite population of
agents. D’Arms et al. (1998) relax this assumption and assume only a finite
population of agents who randomly interact with each other. “Random inter-
action,” in this context, means pairwise sampling without replacement until
each agent in the population has interacted with someone. At the beginning
of the next generation, the population is renormalized to keep the total num-
ber of agents constant, allocating strategies as determined by the payoffs in the
previous round.

Given the different assumptions underlying each model, one might expect
them to produce divergent results; surprisingly, this does not happen. Plots of
population trajectories over the simplex space, for the special case where the
set of possible strategies is restricted to demand 1

3 , demand 1
2 , and demand 2

3 ,
look virtually identical. Both contain a significant region that converges to a
state of fair division with another, smaller, region converging to a polymorphism
between demand 1

3 and demand 2
3 .

1

1Strictly speaking, the nature of D’Arms et al.’s model prevent us from speaking of regions of
the simplex space converging to fair division in the same sense as with Skyrms’s model. The
fact that D’Arms et al. use a finite population with random pairing introduces a stochastic
element into their model which prevents us from being able to say with absolute certainty that
the population will always follow a certain trajectory when started at a particular point in the
simplex space. To see this, notice that certain odd trajectories may occur in their model which
cannot occur under the replicator dynamics. For example, in a population containing only
the strategies demand 2

3
and demand 1

3
, random pairing could, conceivably, pair all agents

who demand 2

3
with agents who demand 2

3
. If this continued, the demand 2

3
strategy could

eventually go extinct. This cannot happen in the replicator dynamics. Thus, with respect
to D’Arms et al.’s model, one can only say that there exist certain regions of the simplex
space such that any population started in those regions will, with high probability, converge
to a polymorphism. Similar qualifications need be made for regions which “converge” to fair
division.
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The existence of regions converging to unfair polymorphisms like the 1
3/

2
3

split poses a problem for evolutionary game theoretic accounts of justice. When
the basin of attraction for that region is of a significant size, the strength of
the evolutionary explanation is weakened because of the dependence on the
initial conditions. Saying that we opt for fair division in completely symmetric
circumstances because the initial state S of our society happened to fall within
the basin of attraction of fair division, at best, offers a weak inductive-statistical
explanation and, at worst, offers no explanation whatsover.

Skyrms addresses this by showing how introducing small amounts of cor-
relation between strategies changes the size of the basins of attraction. When
self-correlation between strategies exceeds .2, the basins of attraction for the
unfair polymorphisms virtually disappear. This would, it seems, complete the
evolutionary explanation: we have shown how from every (or almost every) ini-
tial state of the population the evolutionary dynamics carry the population to
a final state where fair division dominates.

Unfortunately, there remains the question of what allows us to include
a small amount of self-correlation in the model. Some plausible explanation
must be given to prevent the modification from appearing ad hoc. According to
D’Arms et al., Skyrms’s commitment to the explanatory schema of evolution-
ary generalism creates a problem for him on precisely this point. Evolutionary
generalism, which requires one remain silent on the question of what proximate
mechanisms might account for the behavior of fair division, severely limits the
possible explanations one can give to justify introducing self-correlation into
the model. They note, “for Skyrms to suggest that we do [have proclivities
for certain strategies in the Nash demand game] would involve an uncomfort-
able amalgam of generalist and particularist explanatory schemas: insisting on
an innate biological disposition toward a strategy without offering any con-
crete account of or evidence for the psychological mechanisms that subserve it.”
(D’Arms et al., 1998, page 92) I shall return to the question of whether this
composition of explanatory schemas is, in fact, an “uncomfortable amalgam.”

Setting this objection aside, for the moment, let us assume that one can
justify including a certain amount of correlation into the model. D’Arms et al.
observe that if we are going to introduce correlation into the model, it cuts both
ways: strategies can be both positively and negatively correlated. Although it
pays for the demand 1

2 strategy to self-correlate, since both agents benefit from
the interaction, it would be foolish for the demand 2

3 strategy to self-correlate
as both agents receive nothing. (Note that introducing correlation, whether
positive or negative, has absolutely no effect on the demand 1

3 strategy since this
strategy always receives 1

3 no matter who it pairs with.) In D’Arms et al.’s finite
population model, when positive self-correlation applies only to demand 1

2 , the
basin of attraction for the unfair polymorphism fails to disappear; introducing
anticorrelation between demand 2

3 strategies causes the basins of attraction for
the unfair polymorphism to grow. D’Arms et al. interpret this as undermining
Skyrms’s account of the evolution of justice. This conclusion seems to me too
strong, as I shall explain.
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3. The structure of evolutionary explanations. To begin, a few clarifica-
tory remarks concerning what the explanatory schema of evolutionary particu-
larism and evolutionary generalism are seem in order. Unfortunately, D’Arms
et al. do not explicitly characterize the explanatory schema of evolutionary
generalism and evolutionary particularism, describing instances of these ex-
planatory schema instead. For example, D’Arms et al. begin their discussion of
evolutionary particularism by focusing on particular approaches to the evolu-
tionary explanation of human behavior, only later narrowing it to the case where
moral capacities are the explanandum (presumably in anticipation of the later
discussion regarding fair division in the Nash bargaining game). This is sug-
gested, somewhat elliptically, at the beginning of their discussion of evolutionary
particularism, for they write: “According to the particularist hypothesis, the
human mind comprises an array of discrete adaptive mechanisms. . . .” (D’Arms
et al., 1998, pg. 82) If this is to be a description of the explanatory schema
of evolutionary particularism, then evolutionary particularism only serves to
explain features of the human mind. However, it seems to me that the explana-
tory schema of evolutionary particularism and evolutionary generalism have a
wider range of potential applicability than this would allow. Thus, to arrive at
a characterization of the explanatory schema we must work backward from the
particular instances provided.

According to D’Arms et al., the schema of evolutionary particularism when
applied in the domain of evolutionary psychology, generates explanations of the
following sort:

the human mind comprises an array of discrete adaptive mechanisms, gen-
erated through a process of natural selection in which distinctive sorts of
adaptive problems forged functionally distinct adaptive solutions. . . These
mechanisms are functionally specialized to process information concerning
specific adaptive problems and produce behavior that solves those prob-
lems. (D’Arms et al., 1998, pg. 84)

I interpret the statement that “distinctive sorts of adaptive problems forged
functionally distinct adaptive solutions” as saying that, for each adaptive prob-
lem p, natural selection generates a mechanism Mp such that Mp extracts in-
formation particular to the problem p from the current situation S (D’Arms
et al. call this the “environment of evolutionary adaptation”), producing a final
behavior b that solves p.

When the explanandum is a moral capacity, D’Arms et al.’s characteriza-
tion of evolutionary particularism is as follows:

Thus, for instance, the particular hypothesis with respect to our moral
capacties holds that selective pressures deriving from the fitness conse-
quences of various social relations. . . have forged similarly specific adap-
tive psychological mechanisms which mediate cognition and motivation in
these domains. (D’Arms et al., 1998, pg. 82)

I interpret this as saying that a particularist explanation of a (particular) moral
capacity c consists of specifying an adaptive mechanism Mc which serves to
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extract information from the current situation S (thus “mediat[ing] cognition”)
and motivating the appropriate behavior b. D’Arms et al. presumably slip
from speaking of the mechanism producing the behavior to merely motivating

the behavior since, in the case of the moral phenomena, the “morally correct”
behavior is not always produced.

In light of this, I take the explanatory schema of evolutionary particularism
to have the following form. The explanandum consists of a behavior b in a
situation S in response to problem p. The explanans consists of a mechanism
Mp which, given p in S, produces b. Since the mechanism Mp is tailor-made
to generate the behavior b in response to the adaptive problem p, the name
“evolutionary particularism” seems apt. Thus, an evolutionary particularist
explanation of, say, some individual’s behavior in the Nash bargaining game,
would consist of a specification of some mechanism M which serves to produce
the observed behavior in the appropriate circumstances.

Now let us turn to the schema of evolutionary generalism. According to
D’Arms et al., evolutionary generalists “seek to describe behavior by pointing
to adaptive advantages for those who engage in it, without attempting to ex-
plain how exactly tendencies to behave in the relevant way are embodied in a
psychology.” (D’Arms et al., 1998, pg. 87) In order for the comparison between
evolutionary generalism and evolutionary particularism to be interesting, these
two explanatory schemas must address the same explanandum. Thus, as for
evolutionary particularism, the explanandum for evolutionary generalism con-
sists of a behavior b in a situation S in response to problem p. Although D’Arms
et al. describe the generalist approach as one which does not attempt to explain
how tendencies to behave in the relevant way are embodied in a psychology, we
must also remember that here, as before, D’Arms et al. are talking about an
instance of the explanatory schema of evolutionary generalism. What form does
the explanans take when we ascend to the level of the schema? Given the re-
mark that “what the generalist approach to evolutionary explanation lacks in
detail, it seeks to compensate for with robustness,” (D’Arms et al., 1998, pg. 87)
it would seem not too far off the mark to take the explanans of evolutionary
generalism as a specification of some robustness properties R (or adaptive ad-
vantages) possessed by the behavior b.

As I mentioned in section 3, D’Arms et al. argue that Skyrms’s intro-
duction of correlation into his replicator dynamic model of the Nash bargaining
involves an “unhealthy amalgam” of the two explanatory schema. Now that we
have (hopefully) clarified what these two schema are, the time has arrived to
take a closer look at this claim.

Consider the claim that evolutionary game theoretic accounts of moral
norms use the explanatory schema of evolutionary generalism. Evolutionary
generalists seek to explain individual behavior by appealing to adaptive advan-
tages accruing to individuals which engage in such behavior, without providing
an explicit account of the proximate mechanisms (psychological or biological)
that generate the behavior. In this eschewal of explicit details regarding proxi-
mate mechanisms, generalist explanations do stand in stark contrast with par-
ticularist explanations. Particularists attempt to account for human behavior
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through particular psychological (or biological) mechanisms, where these mech-
anisms were acquired over time by natural selection because of the particular
solution they offered to the particular adaptative problems faced by individuals,
and generalists do not.

A evolutionary particularist may offer the following criticism against the
evolutionary generalist program: too many details are omitted for what they
offer to count as an explanation. Although problems exist with competing
evolutionary accounts of principles of justice, at least sociobiologists and selfish-
gene theorists offer possible accounts of how certain behaviors might be brought
about by selective forces. Without some sort of fine-grain story of the proximate
mechanisms serving to bring about the behavior in question,2 the evolutionary
generalist’s appeal to selective forces serves as a naturalistic god of the gaps.3

Although this criticism has some force, it seems to miss the point of gen-
eralist explanations. Generalist explanations, by their very nature, do not seek
the precise mechanisms underlying individual behavior. What generalist expla-
nations provide, as I see it, is an explanation for why such behavior was selected
for in the first place. This is why evolutionary generalists concern themselves
with questions about the robustness properties of the behavior b under inspec-
tion. If one can show that behavior b confers adaptative benefits in all, or almost
all, situations an agent might find herself in, then selective forces will generally
tend to increase the prevalence of b in the population.4 If the model reasonably
approximates the relevant features of the real world, we have an explanation
of why one would expect to find b widely followed by agents in the population.
It is a curious fact that the two explanatory schema, though they address the
same explanandum, operate on very different levels: particularist explanations
show how certain specific mechanisms (generated by natural selection) serve to
produce b; generalist explanations show why we might expect b to be selected
for in the first place.

As I mentioned earlier, D’Arms et al. perceive a tension between the
explanatory strategies of evolutionary generalism and evolutionary particular-
ism. They dismiss one possible justification for introducing correlation between
strategies in Skyrms’s model on the grounds that it “would involve an uncom-
fortable amalgam of generalist and particularist explanatory schemas.” Appar-
ently, D’Arms et al. think Skyrms needs to explain what allows him to add
correlation into the model without it appearing ad hoc and, furthermore, they

2Such as a specification of biological, psychological, or sociological mechanisms which create
an increased tendency to produce the behavior, as well as a plausible account of how those
mechanisms may arise as a product of selective forces on the population.
3A weaker criticism simply notes that, “. . . when such explanations undermine our own un-
derstanding of our practices, it is appropriate to request an account of how facts about fitness
have impinged themselves on the agent. Failure to provide such an account is not a decisive
objection to the explanation, but. . . can often be counted against it.” (D’Arms et al., 1998,
page 83)
4The assumption that agents tend to adopt behaviors conferring adaptative benefits appears
under various names depending on the discipline. In economics, saying that a behavior confers
“adaptative benefits” is often elliptical for saying that behavior satisfies individual preferences
(or increases the likelihood of satisfying individual preferences) of the agent, and subsumed
under the rational actor hypothesis.
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also think that any such explanation must refer to some particular proximate
mechanism, in violation of the explanatory generalist schema (outlined above)
which does not make reference to any specific proximate mechanism.

This criticism does not seem right for two reasons. First, why should
Skyrms, or any evolutionary generalist, have to justify the introduction of cor-
relation into his model by appealing to specific proximate mechanisms? Both

D’Arms et al. and Skyrms make certain assumptions about the nature of the
underlying population when creating their models. If Skyrms needs to explain
what allows him to add correlation to the model by appealing to some particular
proximate mechanism, then it seems that D’Arms et al. would similarily need
to provide the particular proximate mechanisms that justify the assumptions
underlying their model. Or, putting the point another way, on what grounds
do D’Arms et al. identify some assumptions as needing justification in terms of
proximate mechanisms while other assumptions (to my mind, equally in need
of justification) get included for free? Requiring that one provide evidence of
an underlying proximate mechanism supporting a choice in model construction
suggests that the explanatory schema of evolutionary generalism cannot stand
apart from the schema of evolutionary particularism, a position at odds with
D’Arms et al.’s portrayal of generalism and particularism as distinct, indepen-
dent explanatory schemas.

Second, why does an appeal to specific proximate mechanism by an evo-
lutionary generalist produce an “unhealthy amalgam” at all? It seems that
D’Arms et al. take the generalist’s intent to point to adaptive advantages (or
robustness properties) of a behavior “without attempting to explain how ex-
actly tendencies to behave in the relevant way are embodied in a psychology”
as requiring generalist explanations to eschew referencing any specific proxi-
mate mechanism. So much so that, if a generalist does, in fact, appeal to
specific proximate mechanisms, the explanation offered ceases to comply with
the explanatory generalist schema.

I suspect the real reason underlying D’Arms et al. requirement that the
generalist eschew talk of specific proximate mechanisms has to do with how the
evolutionary generalist shows that the behavior of interest possesses the “right
sort” of sufficiently strong robustness property. The fewer specific assumptions
the evolutionary generalist need appeal to in his or her game theoretic model
(e.g., specific proximate mechanisms which generate correlation between certain
behavior types in the population of interest), the wider range of applicability
the resulting robustness property has. For example, if an evolutionary generalist
can show that fair behavior emerges in a replicator dynamic model of the Nash
bargaining game with a small amount of (positive) correlation, we might expect
to find such behavior in situations sufficiently close to the Nash bargaining
game among all species with resources (biological or psychological) capable of
generating such correlation.5 However, if an evolutionary generalist could show
that fair behavior emerges in a replicator dynamic model of the Nash bargaining

5I qualify this somewhat since other factors of greater import to the survival of the species
might trump adoption of fair division in the Nash bargaining game-like situation.
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game without any correlation (which we know is not possible), then we would
expect to find such behavior present in a wider range of species.

So, when evolutionary generalists do appeal to specific proximate mecha-
nisms to justify some aspect of a model, that serves to reduce the strength of
the resulting robustness claim. However, we should recognize that the amount
which appeal to specific proximate mechanisms reduces the resulting robustness
claim depends entirely on the nature of the proximate mechanism appealed to.
To be sure, if a generalist was only able to show (in an appropriately formed
game-theoretic model) that fair division in the Nash bargaining game occurred
in populations of male philosophers who all correlated on the strategy followed
by the one of them whose name was Brian, then the resulting robustness claim
(and the consequent strength of the explanation) would be very weak indeed.
Luckily, most cases of interest will not be this extreme.

Setting this issue aside, I now argue for the connection between the schema
of generalism and particularism being considerably closer than D’Arms et al.
allow. As we just saw, requiring the generalist to eschew proximate mecha-
nisms entirely forces the generalist to work with such abstract models that it
may be difficult, in principle, to justify including processes required to model
the desired phenomena accurately. Constructing good evolutionary game theo-
retic models involves the delicate task of choosing which features to include and
which to neglect, a task virtually impossible to do well without paying consider-
able attention to the details D’Arms et al. envision the evolutionary generalist
sweeping under the rug. Consequently, I will sketch a two-tiered strategy of evo-
lutionary explanation in which the generalist and particularist schema appear
as conceptually distinct, but necessarily integrated, components.

Consider the general problem at hand: to what extent can we give a evo-
lutionary explanation of human behavior? Before we can make much progress
on this question, we obviously need to narrow the scope of the question through
further specification of the explanandum. Recently, a favored explanandum has
been the existence of altruistic behavior. As is well-known, this was the topic
initially chosen by sociobiologists and selfish gene theorists because, on the sur-
face, it seems that Darwinian natural selection should exclude the emergence
of altruism. (See Sober and Wilson (1998) for an extended argument that Dar-
winian natural selection can favor altruistic behavior when properly understood
as multilevel selection.) Skyrms’s work on fair division in games of divide-the-
dollar chooses a different explanandum, a behavior widely observed in both
informal and formal settings (see Nydegger and Owen, 1974, Huyck et al., 1995,
and Yaari and Bar-Hillel, 1984).

Once the explanandum has been selected, we need to determine the level
at which we seek an explanation. Suppose that, as good reductionists, we seek a
finely-structured explanation for the behavior b in question where, ideally, this
means specifying some mechanism underwriting b. Looking for such an expla-
nation, we approach the explanatory question as an evolutionary particularist.
Although some mechanism has to exist, simply because any naturally occurring
behavior has some mechanism which brings it about, what we, as evolutionary
particularists, are interested in is whether there is an adaptive mechanism un-
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derwriting the behavior. Yet one would be ill-advised to search for an adaptive
mechanism without having reason to believe an adaptive mechanism exists. Af-
ter all, b could be generated as a side-effect from two (or more) mechanisms
operating concurrently, each of which were selected for reasons having little to
do with the consequences of b.6

However, if one can show that behavior b emerges from all, or almost all,
initial situations in a model M that reasonably approximates the relevant fea-
tures of the situation under consideration, then we have good reason to believe
that an adaptive mechanism underwriting b exists. The general principle here
is that if a behavior confers a strong selective advantage to individuals who
follow that behavior, then selective forces (cultural or biological) will operate so
as to install proximate mechanisms (again, cultural or biological) which, when
enacted, realize behavior b. At this point, we now have reason to believe that
an adaptive mechanism exists.7

In this two-tiered conception of evolutionary explanation, one uses ab-
stract, idealized models which capture a sufficient level of detail of the actual
situation to determine which behaviors are likely candidates for being generated
by adaptive mechanisms. Once we have established the plausibility of there be-
ing an underlying adaptive mechanism, we then look for a finely-structured
explanation given in terms of proximate mechanisms to complete the account.
However, as the question of what proximate mechanisms give rise to behavior
is an empirical question, it is one best addressed by wet biologists, sociologists,
anthropologists, cognitive psychologists, and so on.

The lower tier, then, attempts to explain the substantive content of princi-
ples of justice in terms of particular adaptive mechanisms. If we cannot discern a
mechanism, brought about by social or biological evolution, which generates the
behavior, something is missing in the explanation. Additionally, the second tier
is needed because no matter how successful we are at explaining the substantive
content of a principle of justice in terms of particular adaptive mechanisms, we
still need to account for the normative content of the principle.8 This is, I be-

6This differs from the problem of functional equivalents. The problem of functional equivalents
notes that if an organism evidences behavior b in environment e, and e is correlated with
another property i, then b may be explained by either a proximate mechanism p detecting
e or a proximate mechanism p′ detecting i. That is, the process of natural selection need
not choose proximate mechanisms for the behavior b which take into account the environment
directly. The possibility noted here is that if the organism has proximate mechanisms p and p′

operating concurrently, then the interaction of the two mechanisms may generate b when p

and p′ were selected for reasons which have nothing to do with the adaptive benefits confered
by b.
7I do not mean to attribute this methodology to either evolutionary game theory or Skyrms.
It is merely put forth as a recommendation.
8If we have a rich enough set of proximate mechanisms, we might be able to explain the per-

ceived normative content of the principle. For example, someday we might be able to explain
why we feel that the 50–50 split in divide-the-dollar is the right thing to do because of various
features of the complex neurological architecture of the brain, coupled with our particular
learning histories, combined with a description of how the process of natural selection led
to our present neurological architecture. However, one can always ask whether the 50–50
split in divide-the-dollar is really the right thing to do, regardless of how we feel about it.
It’s conceivable that, someday, we might also be able to explain the proximate mechanisms

9



lieve, why the generalist approach plays an essential role, and why evolutionary
explanations of justice can not be given entirely in particularist terms.

We’ve already supposed that the generalist has shown, in a modelM which
reasonably approximates the relevant features of the situation under consider-
ation, that from all (or almost all) initial conditions the population converges
to a state in which the behavior b dominates. If M did not provide for the
random introduction of new strategies into the population (say, via mutation or
trembling-hand type errors), let M ′ be a model extending M which does. (If
M already considered mutations or trembling-hand type errors, then M ′ = M .)
Finally, suppose that for reasonable values of the mutation parameters µ̂ one
can show that it still holds that from all (or almost all) initial conditions the
population converges to a state in which the behavior of interest dominates.
We also need to add the requirement that in the unlikely event every member
(or most members) of the population mutates into a strategy other than fair
division, fair division will shortly dominate again. Let us call a strategy with
this property a stochastically robust strategy.9 If such conditions hold, it seems
to me that this would provide an explanation for the normative component of
the behavior.

To see why, consider the case for fair division in divide-the-dollar. What
does it mean to say that, under completely symmetric circumstances, one ought
to demand half? This can mean several things. It can mean that it is morally
wrong (or unjust or unfair) to do otherwise, or, alternatively, that it is simply
in one’s self-interest to demand half. Although both cases say that one should
demand half, some see the former as having an additional normative component
that the latter lacks. Here, I concentrate exclusively on self-interest, assuming
the purported extra moral content to be a useful illusion.10

If fair division were a stochastically robust strategy, would an agent A have

(neurological or sociological) generating this metaphysical questioning in such a way so as to
render the question meaningless. However, let us assume for the time being that this question
is meaningful and that what one is asking for is an explanation of why one ought to demand
50–50 in the game of divide-the-dollar.
9This last requirement is not the same as requiring the strategy of fair division to be stochas-
tically stable. Recall that if one can show the amount of time the population spends in the
state of fair division converges to one as the mutation rate goes to zero, the strategy produc-
ing the behavior of concern is a stochastically stable strategy. The reason for the stronger
requirement shall be explained shortly.
10A complete treatment of this point would take us too far afield, but a few remarks are called
for. Consider the utilitarian’s response to the charge that they do not really account for the
moral sentiment behind norms: since agents cannot perform the utility calculations justifying
acceptance of the rule, we endow the rule with supposed “moral” force to ensure compliance.
The parallel problem here is that boundedly rational agents cannot reproduce the generalist’s
argument that demanding half best serves their self-interest, but they can know that it is in
their self-interest to demand half. Thus, these boundedly rational agents endow the rule of
demanding half with supposedly “moral” force to ensure compliance. Agents can know that it
is in their self-interest to demand half without knowing why by simple induction; each agent
keeps track of how well their surrounding neighbors do over time, discovering that agents
who demand half typically do better than agents who do not. Although no agent knows why

demanding half typically does better than not, they can detect that they will do better if they
demand half than if they do not.
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reason to follow a strategy other than fair division? If the population consisted
mostly of fair dividers, A’s adopting a strategy other than fair division would
correspond to a mutation occurring in the population. Since we’re assuming fair
division to be stochastically robust, the majority of the population will continue
to follow fair division even in light of A’s mutation. Furthermore, adopting
another strategy other than fair division does not work to A’s advantage: if he
demands more than half of the cake, he will receive nothing in his interactions
with fair dividers and, since they comprise the majority of the population, this
means that in most of his interactions A will receive nothing. On the other hand,
if A demands less than half the cake, in the majority of his interactions he will
receive less than he would have if he demanded half. In such a population, A
should demand half because only the strategy of demand half maximizes A’s
expected amount of cake.

Now consider what happens when the population consists of strategies
other than fair dividers, such as one of the polymorphisms occuring in the
models of Skyrms (1996) and D’Arms et al. (1998). Would A have reason to
follow a strategy other than fair division? Given the definition of a stochastically
robust strategy, fair division will shortly come to dominate the population even
though the population does not currently contain any fair dividers. A might
receive limited benefits from continuing to follow a strategy belonging to the
polymorphic pair, but once the majority of the population has switched to fair
division we are back in the case discussed above. If A seeks to maximize his
expected amount of cake, A will ultimately adopt the strategy of demand half.
Since fair division will shortly dominate the population, A should demand half
because only the strategy of demand half maximizes A’s expected amount of
cake.

I am misspeaking slightly in saying that the strategy of demand half max-
imizes A’s expected amount of cake, since I have not said anything about the
subjective probabilities that A assigns to the strategies of his opponents. This
is deliberate, and depends on a particular conception of the strategic problem A
faces. I assume that A is a boundedly rational agent who only has knowledge of
the immediate players he interacts with, where those neighbors comprise a very
small segment of the total population. (This conception underlies the spatial
model presented in section 4.) In such a situation, we do not need to speak
of the subjective probabilities A assigns to his opponents’s strategies since A
knows his opponents’s strategies.

However, since A has no information about the strategies of his oppo-
nents’s opponents, A can infer nothing about the future strategies of his oppo-
nents. Why? Because the future strategy of A’s opponent depends upon the
strategies held by the opponents of A’s opponent.11 Although A does know
the current strategy of his opponents, this is of no use to him when deciding
whether he should change his strategy during the next generation. In other

11Strictly speaking, A does have knowledge of one of his opponents’s opponents, since A

knows his own strategy. Assuming, though, that each player has a sufficiently large number of
opponents, this does not give A enough information to infer anything about his opponents’s
future strategies.
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words, A’s choice of strategy for the next generation will be a decision under
uncertainty, not a decision under risk.

Yet if demand half is a stochastically robust strategy and A knows this,
A knows that the strategy of fair division will shortly dominate the population.
This provides a strong incentive for A to demand half, since, given A’s expec-
tation that fair division will shortly dominate the population, demand half is
the strategy which will maximize A’s amount of cake when fair division comes
to dominate. Since A has no information as to when, exactly, fair division will
dominate (other than that it will shortly), if A adopts any strategy other than
fair division, A will not be acting to maximize expected utility.

One might be tempted to argue that A, rather than adopting the strat-
egy of fair division, should instead adopt a best-response strategy (taking into
consideration his opponents’s strategies). However, there are good reasons for
thinking that A should not do this. A best-response strategy for A will be
determined according to the strategies A’s neighbors currently hold. However,
in many cases some (or all) of A’s neighbors will change strategies in the next
generation, often rendering A’s best-response strategy less effective than fair
division. Thus, what the excursion through stochastic robustness, and its de-
pendence on the future trajectory of the population, provides us with is one
possible motivation for agents adopting the strategy of fair division.

Notice the requirement that fair division be a stochastically robust strat-
egy cannot be replaced by weaker assumptions such as being an evolutionarily
stable strategy or being a stochastically stable strategy. Fair division is the
unique evolutionarily stable strategy of divide-the-dollar, but that does not
mean a single agent in a 1

3/
2
3 polymorphic population should consider adopt-

ing it. As the models of Skyrms and D’Arms et al. show, a 1
3/

2
3 polymorphic

population can resist invasion by fair dividers to a considerable extent. Nei-
ther demand 1

3 nor demand 2
3 are, by themselves, evolutionarily stable, but the

polymorphism containing both resists invasion quite well.
The concept of a stochastically stable strategy does not fit the bill either,

since it places no requirement on the amount of time it takes for the population
to move out of an unfair polymorphism. Fair division is the unique stochastically
stable strategy in the game of divide-the-dollar, but this does not mean a single
agent in a 1

3/
2
3 polymorphic population should consider adopting it. All it means

to say that a strategy is stochastically stable is that, in the limit as the mutation
rate converges to 0, the proportion of time the population spends in the pure
state of fair division converges to one—there is no mention about how rapidly
the population moves out of an unfair polymorphic state. It may very well be
in the best interests of an agent trapped in a 1

3/
2
3 polymorphism to continue

with a strategy of demand 1
3 or demand 2

3 , if the population will remain in that
polymorphism for the next several hundred (or thousand) generations.

At this point, we have no reason to believe that fair division in the game
of divide the dollar is stochastically robust. The next section develops a spatial
version of the game of divide-the-dollar, one more realistic than the model of
Skyrms (1996) but differing considerably from the model of D’Arms et al. (1998).
This spatial model has the property that fair division dominates in almost all
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◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

(a) von Neumann

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

(b) Moore 8

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

(c) Moore (24)

Figure 1: Three common neighborhoods defined on a square lattice.

cases when mutations are not present, and dominates in all cases when mutations
are present. I take this to signify two things: first, it suggests the strategy of fair
division is stochastically robust; second, it demonstrates that the results D’Arms
et al. claimed to undermine Skyrms’s account of the evolution of justice depend
entirely on the model used. (A proof that fair division is, in fact, a stochastically
stable strategy can be found in Alexander (1999).)

4. A spatial game of divide-the-dollar. In this model we consider a finite
population of agents distributed over a rectangular lattice which does not con-
nect at the edges. The neighborhood of a player p, denoted N(p), is the set
of all players q that p interacts with during a given round of play. A round
of play consists of two stages. In the first stage, a player p plays the game of
divide-the-dollar with every player in his neighborhood, earning a score equal
to the sum of payoffs from each individual game. In the second stage, the player
updates his strategy by comparing his success level with that of every player in
his neighborhood. Although no a priori reason exists for assuming these neigh-
borhoods to be equal, I follow the majority of papers in the spatial modeling
literature by assuming they are.

Commonly studied neighborhood types when the underlying structure of
the world is a rectangular lattice are listed in figure 1. These diagrams specify
directional offsets identifying the neighbors of a player (indicated in the diagram
by a filled circle). Since the models of this paper are bounded, players on the
boundary have fewer neighbors than those in the interior.

Given that the models of Skyrms (1996) and D’Arms et al. (1998) do not
consider a finite set of agents positioned on a lattice, the connection between
this model and the Skyrms-D’Arms et al. debate may not be immediately clear.
Recall D’Arms et al.’s criticism of the introduction of correlation into Skyrms’s
replicator dynamic model:

What is the justification for adding a correlation factor, though? Once
Skyrms relaxes the requirement of random interactions in the popula-
tion, and allows some degree of assortative interactions, we need to hear a
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justification for assuming that the likely departure from random interac-
tions will be toward correlation in particular. Why think that individuals
are especially likely to meet others playing the same strategy as they
play? (D’Arms et al., 1998, pg. 92)

D’Arms et al. go on to suggest that the most likely justification for the in-
troduction of correlation would be a scenario in which individual strategies
were influenced by genes. The spatial model described here demonstrates one
way correlation between strategies can arise without positing a genetic influ-
ence. Here, correlation between strategies emerges simply through their spatial
positioning and the fact that individuals interact only with their immediate
neighbors.

One might also be under the impression that individual evolutionary game
theoretic accounts of the evolution of justice require a commitment to a partic-
ular model or class of models. If so, then the spatial model developed below will
seem irrelevant to the current debate. This, I believe, mistakenly takes one’s
commitment to the project of seeking evolutionary grounds for certain moral
concepts as a commitment to a particular model used to illustrate how such
evolutionary grounds might arise. Skyrms’s remarks in Evolution of the Social

Contract caution against such a move:

In a finite population, where there is some random element in evolution,
some reasonable amount of divisibility of the good and some correlation,
we can say that it is likely that something close to share and share alike
should evolve in dividing-the-cake situations. This is, perhaps, a beginning
of an explanation of the origin of our concept of justice. (Skyrms, 1996,
pg. 21)

Since the replicator dynamic model is only the beginning of the explanatory
story, we should not think that evolutionary game theoretic accounts of justice
depend upon it.

4.1. Dynamics. The model considered here allows for three different update
rules, each rule having a certain degree of plausibility. The general question of
how one’s choice of the update rule affects the limit form of the model remains
an open and difficult problem.

Imitate the best neighbor. This is the most common update rule in the
spatial modeling literature (see Nowak and May, 1992, Nowak and May, 1993,
Lindgren and Nordahl, 1994, Huberman and Glance, 1993, and Epstein, 1998,
for some instances). According to this rule, each player p looks at her neigh-
bors and adopts the strategy of the neighbor who did the best, where “best”
means “earned the highest score.” As ties may occur between several players
in the neighborhood of p, an additional rule needs to be given which, in such
circumstances, selects a unique strategy. (In all cases it is assumed that p does
not change her strategy unless one neighbor did strictly better than her.12)
12Call a strategy which earned one of the highest scores in the neighborhood of p a maximal

strategy. We assume that the number of players in N(p) who follow a given maximal strategy
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Imitate with probability proportional to success. Unlike the previous
update rule, which ignored neighbors who did better than p but did not earn
one of the best scores, this rule assigns to every neighbor who did better than
p a nonzero probability that p will adopt q’s strategy, where q is a neighbor of
p who did better than p. The exact probability that p will adopt q’s strategy
increases linearly with the relative success of q (for more details on this rule and
the others, see Alexander, 1999).

Imitate best average payoff. Under these dynamics, players calculate the
average payoff of each strategy in their neighborhood and select the one with
the highest value. Since the possibility of ties exists, as in the case of imitate
the best neighbor, some kind of tie-breaking rule needs to be given. Formally,
the tie-breaking rule is the same as that for imitate the best neighbor, with the
exception that we use the set of all strategies which tied for the title of “best
average payoff” instead of the set of strategies which earned the highest score.

All three update rules assume some sort of imitation dynamic in which
players mimic those who did “best” according to some criteria. This devi-
ates somewhat from the standard game theoretic tradition, which typically as-
sumes that players employ more strategic update rules, such as adopting a best-
response strategy or seeking out compatible players to interact with. The use of
imitation rules fits better with the assumption that agents are only boundedly
rational and tend to follow reliable heuristics instead of expressly calculating
the optimal response in each situation.

4.2. Synchronicity assumptions. We assume all updating occurs synchronously.
There has been considerable debate over the appropriateness of this assump-
tion. The original papers of Nowak and May (1992, 1993) on the spatialized
prisoner’s dilemma used synchronous dynamics, and were later criticized by Hu-
berman and Glance (1993) on the grounds that synchronous dynamics lead to
stable equilibrium states which did not appear when asynchronous dynamics
were used. Since then, asynchronous dynamics have typically been preferred,
as the more recent papers of Hegselmann (1996) and Epstein (1998) indicate.
I do not believe, though, that asynchronous dynamics necessarily offer a more
accurate model as they are usually purported; although agents do not update
their strategies in the rigid lock-step manner suggested by synchronous dynam-
ics, neither do they update their strategies in the carefully orchestrated manner
of asynchronous dynamics, where only one agent changes her strategy at a time.

s affects the likelihood that p will choose to adopt s. This seems reasonable since, if several
neighbors of p follow s and earn the maximal score of N(p), it would be foolish of p to ignore
this information. One simple way p might take this information into account is to let the
probability of choosing a maximal strategy s be a linear function of the number of people
in N(p) who follow that strategy. (More complicated functions could be used to model risk-
averse players who require a certain number of neighbors to follow a maximal strategy before
they consider adopting it.) For simplicity, we assume that if the number of players in N(p)
using maximal strategy s is ns, then the probability of p choosing to adopt s is ns divided by
the total number of neighbors who earned the highest score.
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4.3. Results. Table 1 summarizes the final convergent state of the world for
several different combinations of neighborhoods and dynamics. The neighbor-
hoods examined include the three most common in the literature (von Neumann,
Moore (8), and Moore (24)), as well as the three nonstandard types displayed
in figure 2. The row identified as “R(8)” used a different method: at the start
of every generation, each player p randomly selects eight players from the world
to serve as p’s neighborhood for interaction and updating. Thus, the model of
row R(8) serves as an intermediary between the fixed neighborhood structure
of this model and models based on the replicator dynamics.

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

(a) Type 1

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

(b) Type 2

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

(c) Type 3

Figure 2: Three nonstandard neighborhoods used on table 1

Polymorphism

Nbhd Dynamics 0–10 1–9 2–8 3–7 4–6 5 Other
Mimic with proportion relative to success 0 0 0 0 29 9970 1

VN Mimic best neighbor 0 0 0 0 26 9966 8
Imitate best average strategy 0 0 0 0 13 9984 3
Mimic with proportion relative to success 0 0 0 0 26 9973 1

M(8) Mimic best neighbor 0 0 0 0 26 9908 66
Imitate best average strategy 0 0 0 0 24 9970 6
Mimic with proportion relative to success 0 0 0 8 110 9879 3

M(24) Mimic best neighbor 0 0 0 21 220 9721 38
Imitate best average strategy 0 0 0 0 62 9934 4
Mimic with proportion relative to success 0 0 57 556 2418 6964 5

R(8) Mimic best neighbor 0 0 54 550 2560 6833 3
Imitate best average strategy 0 0 0 1 1523 8439 37
Mimic with proportion relative to success 0 0 0 3 47 9949 1

Type 1 Mimic best neighbor 0 0 0 3 62 9933 2
Imitate best average strategy 0 0 0 0 29 9962 9
Mimic with proportion relative to success 0 0 0 0 32 9899 69

Type 2 Mimic best neighbor 0 0 0 0 43 9868 89
Imitate best average strategy 0 0 0 0 28 9924 48
Mimic with proportion relative to success 0 0 0 3 42 9950 5

Type 3 Mimic best neighbor 0 0 0 3 62 9933 5
Imitate best average strategy 0 0 0 0 32 9965 3

Table 1: Convergence results based on neighborhood and dynamic.
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In general, mean times to convergence are quite rapid. Models using
the Moore (8) neighborhood usually converged within sixteen generations to
fair division. This is a considerable improvement over the results of Skyrms
(1996), and a significant improvement of that of Kandori et al. (1993), whose
stochastically stable equilibrium only selects the equilibrium of fair division in
the limit. The larger Moore (24) neighborhood leads to faster convergence times
because the radius of influence of any given single player has increased.

Figures 3, 4, and 5 illustrate the evolutionary path followed by worlds
using three nonstandard neighborhoods. In these figures, the initial conditions
set all strategies equally likely and had players update their strategies using
imitate the best neighbor dynamics. In the first two worlds, the strategy of fair
division emerges from the initial random conditions in the absence of means
to globally coordinate such an outcome. The third figure illustrates the effect
of a degenerate (one-person) neighborhood in which all players use only their
northern neighbor for interaction and updating.

4.4. Dependence upon cake size. Skyrms (1996) reported an interesting rela-
tionship between granularity of the good and the distribution of the resulting
polymorphism. It turns out that increasing the total number of pieces the cake
is sliced into leads to an increase in the total number of populations that will
evolve into something “near” fair division. In particular, Skyrms found that a
cake divided into 200 pieces went to fair division ± 3 pieces approximately 94.1%
of the time; all trials went to fair division ± 11 pieces. Since most populations
evolving under spatial constraints already lead to a pure state of fair division,
the natural question in this context becomes how coarse can we slice the cake
while still getting fair division? Table 3 lists the results as the number of slices
varies from ten to two, for each of the three dynamics considered, under the
Moore (8) neighborhood.

4.5. Mutations. Mutations introduce a small amount of stochasticity into the
model, controlled by a single global mutation rate µ. At the end of each gener-
ation, each individual in the population has probability µ of adopting another
strategy. Since the probability of no mutations occuring during a single gen-
eration is quite low, even for relatively small populations, we must adjust our
concept of convergence accordingly. I shall say that a population converges to
a state where fair division dominates if all but Nµ members of the population
follow the strategy of fair division (where N denotes the total size of the popula-
tion). In a series of 10,000 trials (all beginning from a randomly chosen point in
state space) with a mutation rate µ = .001, all trials converged to a state where
fair division dominated. Figure 6 illustrates how a pure 4–6 polymorphism may
be taken over by fair division in the presence of a little mutation.

The amount of time required to move a population out of a polymorphism
to a state where fair division dominates obviously depends on the frequency of
mutations µ. Inspection of figure 6 reveals that the critical step involves the
introduction of the demand 1

2 strategy into a site surrounded by sufficiently
many compatible strategies. If µ is large, we do not have to wait very long for
such a mutation to occur. If µ is small (or if there are not many sites following
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Population composition
Nbhd Dynamics 0–10 1–9 2–8 3–7 4–6 fair

Mimic with proportion relative to success – – – – 25.4 23.9
VN Mimic best neighbor – – – – 22.7 26.3

Imitate best average strategy – – – – 32.2 23.9
Mimic with proportion relative to success – – – – 17.9 16.4

M(8) Mimic best neighbor – – – – 28.0 15.4
Imitate best average strategy – – – – 17.2 14.6
Mimic with proportion relative to success – – – 13.9 17.2 14.9

M(24) Mimic best neighbor – – – 32.3 22.8 12.8
Imitate best average strategy – – – – 18.7 10.6
Mimic with proportion relative to success – – 38.4 24.8 13.5 6.2

R(8) Mimic best neighbor – – 15.5 13.9 8.5 4.5
Imitate best average strategy – – – 28.0 16.1 5.37
Mimic with proportion relative to success – – – 22.0 21.8 15.2

Type 1 Mimic best neighbor – – – 24.0 10.7 12.69
Imitate best average strategy – – – – 11.2 11.4
Mimic with proportion relative to success – – – – 22.4 15.6

Type 2 Mimic best neighbor – – – – 16.3 15.3
Imitate best average strategy – – – – 16.6 13.7
Mimic with proportion relative to success – – – 17.7 20.7 14.4

Type 3 Mimic best neighbor – – – 24.0 10.7 12.7
Imitate best average strategy – – – – 11.5 12.0

Table 2: Mean convergence times

(a) Gen. 0 (b) Gen. 2 (c) Gen. 4 (d) Gen. 10

Figure 3: Evolution under neighborhoods of type 1

(a) Gen. 0 (b) Gen. 2 (c) Gen. 4 (d) Gen. 6

Figure 4: Evolution under type 2 neighborhoods

18



(a) Gen. 0 (b) Gen. 10 (c) Gen. 30 (d) Gen. 100

Figure 5: Evolution under degenerate (one person) neighborhoods

Figure 6: Emergence of fair division out of a 4–6 polymorphism due to mutation
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Polymorphism
Cake size Dynamics 0–10 1–9 2–8 3–7 4–6 5 Other

Mimic best neighbor 0 0 0 0 2 998 0
10 Imitate best average strategy 0 0 0 0 2 998 0

Imitate using relative success 0 0 0 0 3 997 0
Mimic best neighbor 0 0 0 0 510 0 99511

9 Imitate best average strategy 0 0 0 0 1∗ 0 99912

Imitate using relative success 0 0 0 0 17∗ 0 98313

Mimic best neighbor 0 0 0 0 9991 0 11

8 Imitate best average strategy 0 0 0 0 998∗ 0 23

Imitate using relative success 0 0 0 0 1000∗ 0 0
Mimic best neighbor 0 0 0 3 0 0 99714

7 Imitate best average strategy 0 0 0 3 0 0 99715

Imitate using relative success 0 0 0 4 0 0 99616

Mimic best neighbor 0 0 0 998∗ 0 0 24

6 Imitate best average strategy 0 0 0 1000∗ 0 0 0
Imitate using relative success 0 0 0 995∗ 0 0 55

Mimic best neighbor 0 0 1 0 0 0 99917

5 Imitate best average strategy 0 0 1 0 0 0 99918

Imitate using relative success 0 0 2 0 0 0 99819

Mimic best neighbor 0 0 1000∗ 0 0 0 0
4 Imitate best average strategy 0 0 999∗ 0 0 0 16

Imitate using relative success 0 0 997∗ 0 0 0 37

Mimic best neighbor 0 1 0 0 0 0 99920

3 Imitate best average strategy 0 0 0 0 0 0 100021

Imitate using relative success 0 0 0 0 0 0 100022

Mimic best neighbor 0 997∗ 0 0 0 0 38

2 Imitate best average strategy 0 1000∗ 0 0 0 0 0
Imitate using relative success 0 998∗ 0 0 0 0 29

1Of these, 973 were pure states of demand 4. 2A 3–5 polymorphism, (3609, 6391). 3Two
3–5 polymorphisms: (5112, 4888), (5196, 4804). 4Two 2–4 polymorphisms: (3736, 6264),
(3813, 6187). 5Five 2–4 polymorphisms: (3273, 6727), (3484, 6516), (3380, 6620),
(3476, 6524), (3589, 6411). 6A 1–3 polymorphism, (2563, 7437). 7Three 1–3 polymor-
phisms: (2147, 7853), (2233, 7767), (2135, 7865). 8In all three worlds, the strategy of
demand 1 went extinct early on, leaving the population in an unstable equilibrium of
(1, 0, 9728, 34, 34, 36, 1, 90, 28, 0, 48), (22, 0, 5682, 129, 571, 884, 556, 430, 960, 128, 638), and
(69, 0, 5771, 1646, 321, 86, 187, 626, 844, 115, 335). 9Both worlds contain unstable equilib-
rium in which all strategies are present: (4, 7, 5241, 212, 90, 195, 280, 495, 2387, 572, 517) and
(2, 11, 2440, 523, 646, 988, 702, 1831, 105, 1040, 1712). 10 Four of these states contained only de-
mand 4. 11 One 3–6 polymorphism, one 3–5 polymorphism, with the rest being 4–5 polymorphisms.
12 Three 3–6 polymorphisms, the rest 4–5 polymorphisms. 13 Three 3–6 polymorphisms, the rest 4–
5 polymorphisms. 14 One 2–5 polymorphism, one 2–4–5 polymorphism, the rest 3–4 polymorphisms.
15 Five 2–5 polymorphisms, the rest 3–4 polymorphisms. 16 Two 2–5 polymorphisms, the rest 3–4
polymorphisms. 17 Two 1–3–4 polymorphisms, the rest 2–3 polymorphisms. 18 One 1–3–4 polymor-
phism, the rest 2–3 polymorphisms. 19 All 2–3 polymorphisms. 20 One world containing the unstable
equilibrium (15, 3, 108, 4220, 254, 146, 525, 855, 2335, 1520, 19), the rest 1–2 polymorphisms. 21 One
world containing the unstable equilibrium (0, 0, 1074, 1070, 1011, 1111, 1125, 1083, 1110, 1175, 1241),
the rest 1–2 polymorphisms. 22 Three unstable equilbriums of the following form:
(6, 0, 8764, 9, 10, 806, 60, 95, 116, 53, 81), (86, 0, 2958, 1357, 648, 2611, 263, 1159, 618, 81, 219),
and (10, 10, 129, 1650, 4478, 4, 289, 253, 964, 1080, 1133), the rest 1–2 polymorphisms. ∗All states
contain only the strategy making the lowest demand of the pair.

Table 3: Convergence results for a varying number of slices

20



strategies compatible with fair division), longer times are required. However,
even when µ is small the total time required is quite small in comparison with
the time for the model of Kandori et al. (1993).

5. Concluding remarks. Evolutionary accounts of justice attempt to explain
principles of justice as the natural outcome of an evolutionary process operat-
ing on a population of agents. Ideally, such explanations need to account for
the substantative and normative content of principles of justice. An example
of the beginnings of such an explanation can be found in Skyrms (1996), which
contains an evolutionary game theoretic account of how one substantive prin-
ciple of justice (fair division in the game of divide-the-dollar under completely
symmetric circumstances) might have come about.

D’Arms et al. (1998) criticize Skyrms’s account on methodogical grounds,
charging that his game theoretic account violates the explanatory strategy he
has committed himself to. As argued in section 3, this criticism depends upon
an overly simplistic conception of the explanatory strategy employed. When
we evaluate Skyrms’s account according to the two-tier model of evolutionary
explanation, the methodological criticism evaporates.

D’Arms et al. also describe results from an alternative model which, they
claim, undermine Skyrms’s account of the evolution of justice. One may reason-
ably ask why these results undermine his account. After all, since the replicator
dynamics only capture the most elementary features of real populations, ab-
stracting away many (possibly relevant) features that a more complete model
would include, one should not take the results of this model as conclusive.
Skyrms, well aware of this, consequently refrains from claiming that this model
provides more than a first approximation of one possible process from which our
concept of justice might have emerged.

Although the model of D’Arms et al. improves upon Skyrms’s, both make
assumptions which limit their applicability to the evolution of justice. The
spatial model presented earlier in this paper is more realistic and has more
robust convergence properties than both. Unlike Skyrms’s model, in the spatial
model correlation between compatible strategies arises naturally through the
positioning of agents: demand halfers gather around fellow demand halfers, and
other polymorphic pairs gather around each other. Unlike D’Arms et al.’s model,
there is no need to introduce explicit avoidance behavior between strategies:
the strategies of demand 1

3 and demand 2
3 tend to spread out so as to minimize

incompatible contact. Furthermore, in spatial models there is no need for the
questionable renormalization of the population between rounds which D’Arms
et al. use.

Determing which models best capture the relevant features of populations
of human agents requires careful attention to nontrivial modeling issues. I do not
claim that the spatial agent-based models developed here provide the best basis
for the second tier of evolutionary explanations described in section 3. However,
given the extent to which the convergence properties of spatial models can differ
from their replicator dynamic counterparts and the consequent new perspective
offered on the evolution of the social contract, they open interesting possibilities
for future research.
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