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Follow the Leader: Local Interactions
with Influence Neighborhoods*

Peter Vanderschraaf and J. McKenzie Alexander†‡

We introduce a dynamic model for evolutionary games played on a network where
strategy changes are correlated according to degree of influence between players. Unlike
the notion of stochastic stability (Foster and Young, 1990), which assumes mutations
are stochastically independent and identically distributed, our framework allows for
the possibility that agents correlate their strategies with the strategies of those they
trust, or those who have influence over them. We show that the dynamical properties
of evolutionary games, where such influence neighborhoods appear, differ dramatically
from those where all mutations are stochastically independent, and establish some
elementary convergence results relevant for the evolution of social institutions.

1. Introduction. Game theorists analyze the strategic aspects of interac-
tions. Social network theorists analyze the structures that determine who
interacts with whom. Game theory and social network theory meet when
those who are connected via a network play a game. An emerging liter-
ature explores how players engaged in such network games can gradually
settle into an equilibrium. In this literature, the network game is modeled
as a dynamical system of players who interact with their neighbors1 and
who adjust their strategies over time. The attracting points of certain
dynamical adjustment processes are often Nash equilibria of the network
game. Some Nash equilibria are also stochastically stable (Foster and
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1. Player i is said to be a neighbor of another Player j if i and j are connected by an
edge in the social network.
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Young 1990), in the sense that these equilibria emerge and persist when
the dynamical system is perturbed with independent random changes in
strategy or mutations.2 Game theorists have proved some powerful con-
vergence theorems for network games that evolve according to dynamics
perturbed with independent mutations (Ellison 1993, 2000; Young 1998,
Morris 2000). Some argue that these theorems are important in explaining
the evolution of social institutions (Young 1998; Binmore 1998).

In this paper we introduce a dynamical adjustment process for network
games with correlated mutations. This is significant because previous con-
vergence results for network games invoke implausibly strong assump-
tions. In particular, these results assume that random mutations, which
perturb the network game, are stochastically independent and identically
distributed. But stochastic independence clearly fails in many settings.
People often imitate others, even in experimental situations, which pre-
vents mutations from being stochastically independent. In this paper, we
present a model that allows players to imitate the behavior of another
player who mutates, thereby introducing correlated mutations. This kind
of correlated mutation has a natural interpretation: If a player in the
network experiments and can signal her intent to some of the other play-
ers, those who receive the signal might imitate this signaler if she has
sufficient influence over them. The players in this influence neighborhood
who imitate the signaler ‘follow the leader’. We show that the dynamical
properties of evolutionary games allowing for influence neighborhoods
can differ dramatically from ones where all mutations are stochastically
independent. We also argue that this dynamics more closely mirrors the
process by which societies reform, rather than the dynamics of stochas-
tically independent mutation.

In Section 1 we review some basic notions of network games, using the
Assurance game to develop motivating examples. Section 2 discusses how
inductive best-response dynamics are applied to network games, giving
an example where best-response dynamics with independent random mu-
tation never reaches the stochastically stable equilibrium in a reasonable
time frame. We argue that this result casts doubt upon the explanatory
power of models that assume stochastically independent mutations. In
Section 3 we relax the independence assumption by introducing influence
neighborhoods. We show how influence neighborhoods can greatly ac-
celerate the transition from a suboptimal equilibrium to an optimal and
stochastically stable equilibrium. We also show how influence neighbor-
hoods can drive a network out of a stochastically stable equilibrium, and
even converge to an optimal equilibrium that is not stochastically stable.

2. In line with the other literature on network games, in this paper, a mutation is a
random change in strategy, not a biological mutation.
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Figure 1. The Assurance game.

We argue that this influence neighborhood model can be applied to test
the likelihood of cooperation in social dilemmas and Hardin’s (1995) dual
coordination account of the persistence and fall of political regimes. In
Section 4 we give formal definitions of influence neighborhoods and best-
response dynamics with correlated mutations, together with some ele-
mentary convergence results.

2. The Assurance Game Played with Neighbors. Figure 1 summarizes the
symmetric 2-player Assurance game.3 The Assurance game plays an im-
portant role in moral and political philosophy. Philosophers use the As-
surance game to represent collective action problems ranging from co-
operation in the Hobbesian State of Nature to pollution control to
political revolutions.4 The Assurance game also illustrates some of the
challenges of accounting for equilibrium selection in games. In the Figure
1 game, (s1, s1) and (s2, s2) are both coordination equilibria (Lewis 1969)
with the property that neither player’s payoff is improved if one of them
deviates from either (s1, s1) or (s2, s2). The equilibrium (s1, s1) is Pareto
optimal and yields each player his highest possible payoff. However, each
player is certain to gain a positive payoff only if he follows s2. Should
rational players contribute to an optimal outcome or play it safe?

The classical game theory of von Neumann and Morgenstern (1944)
and Nash (1950, 1951a, [1951b] 1996) gives no determinate answer to this
question. Harsanyi and Selten (1988) tried to answer this question by
introducing a refinement of the Nash equilibrium concept called risk dom-
inance. A strategy s is a player’s best response to a strategy profile of the
other players or a probability distribution over these profiles, when s

3. Following standard conventions, Player i’s (Player j’s) payoff at each outcome of
the game is the first (second) coordinate of the payoff vector in the cell of Figure 1
that characterizes this outcome. For instance, if i chooses and j chooses then i’ss s1 2

payoff is 0 and j’s payoff is y.

4. See especially Taylor and Ward 1982; Kavka 1986; Hampton 1986; Taylor 1987;
Jiborn 1999; Skyrms 2001, 2004.
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maximizes the player’s payoff given this profile or distribution. If the
players in a symmetric game each assign a uniform probability2 # 2
distribution over the other’s pure strategies and s* is the unique best
response for both, then (s*, s*) is the risk dominant equilibrium. In the
game of Figure 1, (s1, s1) is risk dominant if and (s2, s2) is riskx 1 y ! z
dominant if . Harsanyi and Selten argue that a player shouldy ! z 1 x
follow her part of a risk dominant equilibrium, because this strategy is
the best response over the larger share of possible probabilities with which
the other player follows his pure strategies (Harsanyi and Selten 1988,
82–83). Risk dominance is an important concept in game theory, but it
raises obvious questions: Why shouldn’t a player’s probabilities over her
opponent’s strategies lie outside the range that makes her end of the risk
dominant equilibrium her best response? Why shouldn’t a player opti-
mistically assign a high probability to her counterpart choosing s1, even
if (s2, s2) is risk dominant, or pessimistically assign a high probability to
her counterpart choosing s2, even if (s1, s1) is risk dominant? In the end,
there really is no determinate solution to the Assurance game. Given
appropriate probabilities reflecting a player’s beliefs about what the other
player will do, either pure strategy can be a best response. Rational players
might fail to follow an equilibrium at all, even if they have common
knowledge of their rationality.5

Now suppose that, in a population of players, everyone plays the As-
surance game with a subset of the population, known as her ‘neighbors’.
At a given time, each player follows one strategy in her interactions with
all her neighbors.6 Explicitly identifying the neighbors with whom each
player interacts embeds the Assurance game in a local interaction structure
or network. Formally, a network is an undirected graph in which the
nodes represent the players. Player j is Player i’s neighbor if the nodes
representing i and j are linked with an edge. If of i’s neighbors follown (s )i 1

s1 and of i’s neighbors follow s2, then s1 is a best response for i ifn (s )i 2

n (s )x ≥ n (s )y ! n (s )z. (1)i 1 i 1 i 2

5. David Lewis (1969, 56–57) presented the first analysis of common knowledge. A
proposition A is Lewis-common knowledge among a group of agents if each agent
knows that all know A and knows that all can infer the consequences of this mutual
knowledge. Lewis-common knowledge implies the following better known analysis of
common knowledge: A is common knowledge for a group of agents if each agent
knows A, each agent knows that each agent knows A, and so on, ad infinitum.

6. To motivate this assumption, common throughout the network game literature, one
can suppose that each player interacts with all her neighbors simultaneously, or that
she cannot keep track of which neighbors follow any particular strategy, so she must
adopt a single strategy for interacting with them all.
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Figure 2. Black players follow . Light players follow .s s2 1

s2 is a best response if the reverse inequality is satisfied. In the special
case where , (1) is equivalent toy p z

n (s )i 1x 7 ≥ z. (2)
n (s ) ! n (s )i 1 i 2

That is, s1 is a best response if the weighted average of payoffs, which i
receives from her neighbors who follow s1, exceeds the guaranteed payoff
of following s2. To illustrate, Figure 2 depicts a ‘propeller’ graph, where
eight outer players are each linked with the same central player and one
outer player. The outer players form the central player’s Moore-8 neigh-
borhood. The Figure 2 graph and Figure 1 game together define a network
game. If, for instance, and , then by (2), s1 is a bestx p 9 y p z p 5
response for the central Player i if or .9 7 [n (s )/8] ≥ 5 n (s ) ≥ 40/9 1 4i 1 i 1

A priori analysis cannot predict what players in a network game will
do any more than classical game theory can predict what a pair of players
who meet in the Assurance game will do. Indeed, local interaction struc-
tures complicate the equilibrium selection problem. If the players in a
network play the Assurance game with their neighbors, then this system
is at one equilibrium if all follow s1, and another if all follow s2. In addition,
there are polymorphic equilibria where some players follow s1, while others
follow s2. If the players in the Figure 2 graph play the Assurance game
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with and for each Player i, then along with the all-s1x p 9 y p z p 5
and all-s2 equilibria, any state, where the central player follows s1 and
exactly two of the outer players linked with each other follow s2, is an
equilibrium. Figure 2 depicts one of these polymorphic equilibria. Which,
if any, of all these equilibria will the players in a local interaction structure
adopt?

2.1. Best-Response Dynamics, and an Apparent Anomaly. In recent
years, game theorists have made increasing use of dynamical adjustment
processes to analyze equilibrium selection. This approach explores how
individuals test and revise their strategies over time until, gradually, they
converge to an equilibrium of a game. The formal model of the process
by which players update their behavior characterizes a dynamical system.
The popularity of this dynamical systems approach is recent, but the
underlying idea appears early in the history of game theory. John Nash
included a dynamical updating method for equilibrium selection in his
original presentation of the Nash equilibrium concept (Nash 1951b).7

Strikingly, David Hume’s analysis of convention in A Treatise of Human
Nature foreshadows both the Nash equilibrium concept and a dynamical
explanation of equilibrium selection (Hume [1740] 1976, 490).8

Over the past decade, several authors (Young 1993, 1998; Kandori,
Mailath and Rob 1993; Ellison 1993, 2000; Morris 2000) have proved a
set of results that establish important connections between risk dominant
equilibria in a wide class of games and the stochastically stable equilibria
(Foster and Young 1990) of a variety of adaptive dynamics. One can
perturb an adaptive dynamic so that each player occasionally mutates by
following a new strategy chosen at random. Informally, an equilibrium
is stochastically stable if it is robust against a low but steady ‘bombard-
ment’ of stochastically independent random mutations in the dynamics.
If a game has a stochastically stable equilibrium of an adaptive dynamic,
then over an infinite sequence of plays, players, who update according to
this dynamic perturbed with independent random mutations, will gravitate
to this equilibrium a nonnegligible part of the time. If the game has a
unique stochastically stable equilibrium, then over infinitely many plays,
the players gravitate to this equilibrium for all but a negligible amount
of time.

With network games, game theorists standardly investigate the prop-

7. Nash’s dynamical model foreshadows the fictitious play processes (Brown 1951;
Fudenberg and Levine 1998) that have become a staple tool for analyzing equilibrium
selection in games.

8. For discussion of Hume’s informal game-theoretic insights, see Lewis 1969 and
Vanderschraaf 1998.
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erties of the inductive best-response dynamic with random perturbations.
According to the best-response dynamic, a player follows a strategy that
yields the highest payoff against the strategies her neighbors have just
followed. This dynamic tacitly assumes that players react myopically to
their situation. If the players in a network play a game with a risk dom-
inant equilibrium, the strategy of this equilibrium characterizes the unique
stochastically stable equilibrium of the system for the best-response dy-
namic with independent random mutation (Ellison 1993; Young 1998).
So, we evidently have a dynamical account of the emergence of risk dom-
inant equilibrium play between neighbors.

The relationship between risk dominance, a static concept from rational
choice game theory, and stochastic stability, a dynamical concept, is of
fundamental theoretical importance. Nevertheless, it is not clear how far
stochastic stability results go in explaining how players in the real world
might interact more successfully. The following example illustrates this
point.

2.2. Example 1. Assurance Game Played on a Torus with Independent
Mutations. Let be an integer and let wherem 1 1 N p {1, . . . , n} n p

. Define a bijective function that2m i : N r {1, . . . , n} # {1, . . . , n}
assigns to each Player i a unique index . The graphi(i) p (i (i), i (i))1 2

N p {{i, j} : Fi (i) " i ( j)F p 1 mod m and/or1 1

Fi (i) " i ( j)F p 1 mod m}2 2

consists of links between each i and the 8 neighbors that immediately
surround i. These links define i’s Moore-8 neighborhood. This 2-dimen-
sional graph is topologically a torus, and can be mapped onto a square
whose edges ‘wrap around’. A number of authors use this graph to model
various local interactions because it roughly approximates the interactions
of agents who neighbor each other in a geographic region.9 We set

, so the entire network contains 10,000 players.m p 100
Next, we augment the local interaction structure with strategies and

payoffs. Each player in the network plays the Figure 3 Assurance game
with each of his Moore-8 neighbors, choosing a single strategy for inter-
action. The risk dominant equilibrium of the Figure 3 game is (s1, s1). So
if players in this system update according to the best-response dynamic
with independent random mutations, then the stochastically stable equi-
librium of this system is the equilibrium where all follow s1. The all-s1

equilibrium is the unique stable attractor of this dynamic for any positive

9. See, for instance, Nowak and May 1992; Nowak, Bonhoeffer and May 1994; Grim,
Mar, and St. Denis 1998; Alexander 2000; Alexander and Skyrms 1999.
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Figure 3. Assurance game with risk dominant.(s , s )1 1

rate of mutation, no matter how small (Young 1998). In particular, if the
system starts in the suboptimal equilibrium with all players following s2,
best-response dynamics with random mutation eventually move the entire
population to the optimal all-s1 equilibrium.

One should wonder how long it takes this movement to occur. To test
the speed of this convergence, we ran a computer simulation of this
system.10 All 10,000 players were initially assigned the strategy s2, starting
the system at the suboptimal all-s2 equilibrium. At each time period, every
player played the Figure 3 Assurance game with her Moore-8 neighbors,
updating her strategy according to a perturbed best-response dynamic.
Stochastically independent mutants appeared at a rate of .05. Each mutant
chose one of the pure strategies, s1 or s2, at random with equal probability.
We deliberately chose this rather high mutation rate so as to bias the
dynamics against the initial all-s2 equilibrium.

While the all-s2 equilibrium is not stochastically stable, it proves sur-
prisingly robust in the face of independent random mutations. The system
was allowed to evolve for 100 million periods.11 Figure 4 depicts the state
of this lattice at the final stage of this simulation. Even though100 # 100
the mutation rate was relatively high, so that at any stage an average of
5% of the players mutated, the s1-mutants were consistently overwhelmed
and could not establish a permanent foothold. Hence, the s1-strategy never
overthrew the incumbent s2-equilibrium. Indeed, in this simulation the
suboptimal all-s2 equilibrium gave the appearance of being stochastically
stable!

One might object that the test of the attracting power of the all-s1

10. All of the simulation experiments summarized in this paper were run using the
Evolutionary Modeling Lab, developed by Alexander. The Evolutionary Modeling Lab
is accessible at http://evolve.lse.ac.uk/eml/, and the specific programs run to perform
the simulations of this paper are available upon request from the authors.

11. The pseudo-random number generator that the Evolutionary Modeling Lab uses
is the Mersenne twister algorithm known as MT19937, which has a provable period
of .199372 " 1
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Figure 4. State of the model after 100,000,000 iterations. Black players follow . Lights2

players follow .s1

equilibrium in Example 1 is too severe. Perhaps rational agents in such
a network would seldom, if ever, all begin by following s2. In fact, we did
relax the severity of the test, and found that the perturbed best-response
dynamic with .05 mutation rate can converge to and never overthrow the
suboptimal all-s2 equilibrium over 100 million rounds of play, even if the
system is initially set with as many as 20% of the network players following
the strategy s1. Still, we think the conditions of Example 1 are not so
farfetched. Social dilemmas occur when individuals are reluctant to con-
tribute towards a common good, even when they realize that all are better
off if all contribute. A network Assurance game models a social dilemma
where a player contributes to the common good by following s1 and
withholds his contribution by following s2. Suppose initially that the ben-
efit of the common good is small compared against the security of not
contributing, so that all tend to follow s2 so as to avoid the costs of
contribution. Then conditions change, making the relative benefit of the
common good significantly greater. The Example 1 network corresponds
to such a situation, since the (s1, s1) equilibrium of the Figure 3 game is
both optimal and risk dominant. However, by (1) at least half of any
player’s neighbors must change from s2 to s1 before s1 becomes this player’s
best response. Example 1 shows that players who best respond to their
neighbors’ previous strategies can have great difficulty making the tran-
sition from consistently following s2 to consistently following s1, even when
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the network is continually ‘bombarded’ by independent random mutations
appearing at a high rate. The initial all-s2 equilibrium of Example 1 models
a state that seems ripe for reform. But the dynamical behavior of this
system reflects the fact that the road to social reform can be a long one.

3. Influence Neighborhoods. Theory tells us that random mutations will
lead players to converge to stochastically stable equilibria almost surely
in the long run. But we have just seen that players in a network who
mutate independently at a high rate can fail to reach the stochastically
stable equilibrium in over 100 million rounds of play. We believe Example
1 casts doubts upon the explanatory power of stochastic stability theorems
applied to network games played by humans. Most, if not all, human
interaction networks change and even dissolve long before the people in
the network approach a 100 millionth consecutive round of interactions,
yet a network of players who mutate independently can fail to approach
its long run limit over 100 million rounds. If stochastic stability theorems
require extraordinarily long waiting times—as Example 1 clearly shows—
how can such theorems be relevant for explaining why actual people
behave the way they do? No person changes his belief 100 million times
in the course of his life, much less within a single repeated game. While
we agree that 100 million rounds of interaction constitutes a short period
of time from the point of view of the ergodic theory underlying stochastic
stability theorems, one must appreciate a crucial difference between phys-
ical and social systems. Ergodic theory provides useful analyses of physical
phenomena simply because, according to the time scale of many physical
events, each elementary component (i.e., atom, molecule, etc.) can be
involved in an extraordinarily large number of interactions in a relatively
short period of time. The same is not true for social systems. Social and
physical systems fail to be analogous precisely where required if ergodic
theory is to be explanatorily relevant.

What if mutations in the dynamics can be correlated? The following
examples show that the evolution of behavior in a network of best-
response updaters can change dramatically if we relax the assumption
that all the mutations are stochastically independent.

3.1. Example 2. Assurance Game Played on a Torus with Influence
Neighborhoods. We revisit the network game of Example 1, with players
(arranged on a torus) who play the Figure 3 Assurance game100 # 100
with Moore-8 neighbors. Again, each player updates his strategy accord-
ing to a perturbed best-response dynamic. However, now we allow for
correlation in the mutations. If a given Player i spontaneously mutates
at stage t, then each of i’s Moore-8 neighbors and each of their Moore-
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8 neighbors imitate i’s stage t strategy with probability .12 The 24l (t)i

players whose stage t strategies are correlated with i’s mutant strategy are
i’s Moore-24 neighborhood in the torus. Each player in this Moore-24
neighborhood follows the mixed strategy of playing i’s mutant strategy
with probability . is a value sampled from the uniform distri-l (t) l (t)i i

bution over [0,1], that is, is a probability for imitation drawn atl (t)i

random from [0,1], for each i.13 We set the spontaneous mutation rate for
a ‘leader’ at a low .0001, so that an average of only one ‘leader’ appears
in the entire network per period. A ‘leader’ spontaneously mutates to s1

with probability .5 and to s2 with probability .5.14

As in Example 1, in every simulation we ran of this dynamic we started
the network game at the suboptimal all-s2 equilibrium. In each of these
simulations, in fewer than 800 generations, the s1-followers had spread
throughout the entire system of players so that all followed s1 except for
occasional areas of s2-followers that emerged due to this correlated mu-
tation.15 These occasional s2-following clusters were quickly overwhelmed
and converted back to s1-following. Figure 5 depicts the state of this

graph at the 100th, 300th, 500th and 700th generations of one100 # 100
of our simulations.

Note that the system converged rapidly to the all s1-equilibrium even
though at any given stage the overall mutation rate was bounded from

12. Why use the Moore (24) neighborhood rather than just the Moore (8) neighbor-
hood? Quite often one’s social influence spreads beyond one’s immediate neighbors or
acquaintances. It is not uncommon for the following situation to occur: A knows B,
B knows C, and A does not know C. Nevertheless, A exerts influence upon C through
B, because B tells C that A believes something or did something. The Moore (24)
neighborhood is a crude first approximation at capturing this phenomenon. Clearly
other influence neighborhoods are worthy of examination. Such a study, though, lies
beyond the scope of this paper.

13. One might consider the use of randomly chosen probabilities as an extreme case.
However, this strikes us as a not implausible assumption. For example, I may have
an extremely skeptical neighbor, yet he may have a neighbor who is capable of being
easily influenced. In such a case, I may have little influence over my immediate neighbor
yet have considerable influence over my neighbor’s neighbor. Lifting the assumption
of randomly chosen probabilities requires making further assumptions about the spe-
cific way influence is exercised and implemented in the social system, assumptions we
do not wish to make at this time.

14. One can also allow independent random mutations to appear alongside the mu-
tations correlated with the ‘leaders’. In this simulation experiment, the independent
mutation rate was set to .0 so that the ‘leader’ players who might be followed by some
of their Moore-24 neighbors received no additional ‘help’ from independent random
mutants.

15. We achieved similar results when we changed the parameters of the dynamics in
various ways, such as setting to be constant over the Moore-24 neighborhood orl (t)i

varying the sizes of the neighborhoods of correlated mutations.
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Figure 5. Black players follow . Light players follow .s s2 1

above by , the overall expected mutation rate if25 7 (1/10,000) p .0025
all of a ‘leader’ player’s Moore-24 neighbors imitated the ‘leader’s’
strategy.

The correlation in mutations described in Example 2 is a correlation
over a ‘leader’s’ influence neighborhood. In this example if Player i is a
leader mutant at period t, then his influence neighborhood is the setI (t)i

of his Moore-24 neighbors. At period t, each imitates i withj ! I (t)i

probability . A natural to way to justify this sort of correlation inl (t)i

strategies is to allow for the possibility of costless communication, or
what game theorists call ‘cheap talk’. If players can communicate, then
they can correlate their strategies with the leader players whose messages
they receive. When i is a leader at period t, i mutates to strategy ands (t)i

communicates this fact to each . measures the strength of i’sj ! I (t) l (t)i i

influence over those in the neighborhood . Those in who imitateI (t) I (t)i i

’s strategy at period t ‘follow their leader’. In Example 2, the cor-i s (t)i

related mutation of influence neighborhoods moves the network game
from the suboptimal to the optimal equilibrium, even though the influence
neighborhoods rarely appear. The road to reform in this example is short-
ened considerably by the introduction of influence neighborhoods.
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Figure 6. Black players follow . Light players follow .s s2 1

Example 2 shows that risk dominant play can overtake an interaction
network fairly rapidly when some players’ strategies are correlated. This
example suggests a framework for modeling the ‘bandwagon’ effect that
drives social reformation. Moreover, the next examples show that when
correlated influence neighborhood mutations are possible, players who
update according to a perturbed best-response dynamic need not converge
to risk dominant play. This suggests a framework for modeling the sta-
bility of political regimes and the process of revolt.

3.2. Example 3. Assurance Game Played on a Bounded Degree Network
with Influence Neighborhoods. Figure 6 depicts a bounded degree network,
where each node is linked with at least 4, and at most 8, others. Again,
the nodes represent players and the edges define each player’s neighbors.
Each player plays the Figure 7 Assurance game with each of her neighbors
in the network. In Figure 7, the suboptimal (s2, s2) equilibrium is risk
dominant. Consequently, in this network game the all-s2 equilibrium is
the unique stochastically stable equilibrium of the best-response dynamic.
In computer simulations, we found that when updating occurred accord-
ing to the best-response dynamic with independent random mutations,
the network converged to the all-s2 equilibrium even if it was initially set
at the all-s1 equilibrium. Moreover, these random mutations never gen-
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Figure 7. Assurance game with risk dominant.(s , s )2 2

erated a permanent foothold of s1-followers in the network, even when
the system was ‘bombarded’ by a high mutation rate of .10 for 100,000
periods. These results were not surprising, given that only all-s2 is sto-
chastically stable.

However, the all-s2 equilibrium does not retain its high attracting power
when mutations can be correlated via influence neighborhoods. In a sec-
ond set of computer simulations, the spontaneous mutation rate was set
at .001, and again a spontaneous mutant followed s1 or s2 at random with
equal probability. If a leader Player i spontaneously mutated to si, then
i’s neighbors together with their neighbors each followed si with proba-
bility selected at random from [0,1]. In these simulations, even whenl (t)i

the network was initially set at the stochastically stable all-s2 equilibrium,
it oscillated between all-s2 and all-s1. Figure 8 summarizes the evolution
of strategies over this network during 5,000 periods of best-response up-
dating perturbed with these influence neighborhoods. In this network, no
equilibrium is stable with respect to these correlated mutations.

In Examples 2 and 3, influence neighborhoods appear in the network
at a fixed rate and a fixed size across pure strategies. In the next example,
influence neighborhoods appear at different rates and in different sizes
across the pure strategies.

3.3. Example 4. Assurance Game Played on a Bounded Degree Network
with Differential Influence Neighborhoods. We consider another bounded
degree network game, where each of 50 players is linked with at least 4,
and at most 8, other players. Each player plays the Figure 7 game with
her neighbors. As in the network game of Example 3, in this case the all-
s2 equilibrium is the unique stochastically stable equilibrium of the best-
response dynamic. In computer simulations, when the system was set at
the all-s2 equilibrium the best-response dynamic with independent random
mutations could never establish a stable foothold of s1-followers over
100,000 periods even with a mutation rate as high as .10. Additionally,
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Figure 8. Frequency of -followers in the 30-player bounded degree network games1

who update according to a best-response dynamic with influence neighborhoods.

the all-s2 equilibrium is not robust against the introduction of influence
neighborhoods of the sort applied to the network game of Example 3.

We next examined the following perturbed best-response dynamics: At
each time step, independent mutants of s2-followers appear with proba-
bility .1, and s1-mutants appear spontaneously with probability .001.
When an s1-mutant appears spontaneously, her neighbors together with
their neighbors each follow s1 with probability chosen at randoml (t)i

from [0,1]. This dynamic always converged to the optimal all-s1 equilib-
rium, even though all-s2 is stochastically stable, and at any time period,
an average of 10% of the players spontaneously mutated to s2. Figure 9
summarizes the results of one computer simulation over 5000 periods
where the system was initially set at the all-s2 equilibrium.

In this network game, all-s1 is the unique stable attractor of the best-
response dynamics perturbed with these influence neighborhoods. This
result is especially striking because s2-following mutants appear 100 times
as often as leader s1-following mutants appear, and even when an s1-
following leader i appears at period t, the correlation in her influence
neighborhood might be weak depending upon . The high influx ofl (t)i
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Figure 9. Frequency of -followers in the 50-player bounded degree network whos1

update according to a best-response dynamic with influence neighborhoods.

s2-mutants cannot prevent the overthrow of the all-s2 equilibrium because
the s1-mutations are correlated. s1-mutant leaders appear seldom in the
network game, but the coordinated play across their influence neighbor-
hoods enables the s1-followers to conquer the network and to suppress
the high influx of s2-mutants over time.

Example 4 shows that influence neighborhoods appearing at random
in a network game can drive this game to an optimal equilibrium, robust
against a high rate of independent mutations, even when the suboptimal
equilibrium of the 2-player base game is risk dominant. The stability of
the optimal equilibrium with respect to this dynamic depends upon the
s1-mutants being correlated, while the s2-mutants remain independent. To
explain this asymmetry, one can allow for differences in ability to com-
municate across individuals. That is, leader s1-following mutants may have
access to some communication channel used to send messages to those
in their influence neighborhoods, while s2-mutants have no reliable means
of communicating. So even though leader s1-mutants appear seldom in
the network, their ability to signal their plans to others enables those they
have influence over to coordinate more effectively. On the other hand,
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even though s2-mutants appear at a much higher rate, they are unable to
communicate and consequently cannot coordinate their activity. So s1-
followers can overthrow an incumbent all-s2 equilibrium and even fight
off a continual high influx of new s2-followers.

This suggests a method for testing Hardin’s (1995) dual coordination
explanation of the duration of regimes and successful revolt. Hardin main-
tains that a generally despised regime will remain in power so long as
agents of the regime can simultaneously coordinate their activity and
prevent those under their jurisdiction from coordinating. This explains
why repressive regimes suppress communication. Hardin argues that if
dissidents become able to communicate and thereby coordinate, while the
regime’s agents lose these abilities, the regime becomes vulnerable. One
can interpret the network game and influence neighborhoods of Example
4 as follows: To follow s2 is to obey a regime all dislike. Suppose, though,
that dissident s1-followers establish an underground broadcasting network
enabling them to send messages to others while jamming the attempts of
reinforcement sent by the s2-following regime. Given these conditions, the
s1-followers stage a successful revolt.

4. The Formal Model. Let denote the set of players andN p {1, . . . , n}
let ij denote the subset . Each with is an undirected{i, j} P N ij P N i ( j
link (or edge) for N. We use to denote the complete undirected graphKn

over N. A subset defines an interaction network. If , thenN P K ij ! Nn

i and j are neighbors and are said to be linked. The set of all players that
a given Player i is linked to is called the neighborhood of i and is denoted

. Since each player in the network interacts with at least one otherNi

player, for all i.N ( Mi

All players in the network play a symmetric, noncooperative 2-player
game G with pure strategy set S and payoff matrix . If i2u : S # S r !
follows and j follows , the payoff to i is and the payoff to j iss s u(s , s )i j i j

. and G characterize the network game .u(s , s ) N Nj i G

A state of a network game is a vector , specifying a"s p (s , . . . , s )k k1 n

strategy for each player in the network. In each round of play, each player
plays the game with all of her neighbors, receiving a score equal to the
sum of the payoffs. A strategy is a best response for Player i to 16"s sk "ii

if maximizes ’s payoff, that is,s iki

′ ′u (s , s ) ≥ u (s , s ) for each s ! S. (3)! !i k k i k k ki j i j i
j!N j!Ni i

16. The subscript ‘"i’ indicates the result of removing the ith component of an n-
tuple. In particular, denotes the tuple of strategies"s p (s , . . . , s , s , . . . , s ) n " 1"i 1 i"1 i!1 n

that Player i’s opponents follow when they all follow ."s p (s , . . . , s )1 n
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denotes the set of Player i’s best responses to . A state" " "S*(s ) s s* pi "i "i

is a Nash equilibrium of ,(s* , . . . , s* ) Nk k G1 n

"s* ! S*(s ) for each i ! N, (4)k i "ii

and is strict if exactly one strategy satisfies (4) for each ."s* i ! N
Since players may change strategies over time, we need to add explicit

time-indexes to some of the above definitions. Consequently, let de-s (t)i

note the strategy i follows at time t. Likewise, let "s(t) p (s (t), . . . , s (t))1 n

denote the state of the network at time t.
The (inductive) best-response dynamic (BR-dynamic) specifies how in-

dividuals change strategies as follows: For each , let be a (possiblyi ! N fi

random) choice function from subsets of strategies to single strategies,
that is, . At each period ,f : P(S) " M r S t 1 0i

"BR (t) p f ({s ! S : s ! S*(s (t " 1))}). (5)i i k k i "k

In words, at time t each Player i adopts a strategy that is a best response
to the strategies i’s neighbors followed at period . If contains moret " 1 S*i
than one pure strategy, then i selects one of these best responses according
to his choice function.

Notice that for each , only if " "BR (t) p BR (t " 1) i ! N s(t) p s(t " 1)i i

is a Nash equilibrium of , that is, the fixed points of the BR-dynamicNG

are Nash equilibria of the network game. Also note that the converse
need not hold, for if is a Nash equilibrium but not strict, then at"s(t " 1)
time t some players might choose best responses other than their respective
parts of . However, any strict Nash equilibrium is a fixed point of"s(t " 1)
the BR-dynamic, since by definition each player’s part of such an equi-
librium is her unique best response to the others’ strategies.

Let denote a completely mixed strategy17 for Player i andji

denote stochastically independent propositions such thatt tA , . . . , A! !1 n

. Then the -dynamic with independent random mutation istPr (A ) p ! BR! ii

defined by

BR (t, ! , j ) p (1 " 1 ) 7 BR (t) ! 1 7 j , (6)t ti i A i A ii ! !i i

where denotes the indicator of a proposition A.18 That is, at each stage1A

17. A player follows a completely mixed strategy by pegging his pure strategies on a
random experiment such that each pure strategy has a positive probability of being
followed according to the outcome of the experiment (von Neumann and Morgenstern
1944; Nash 1951a).

18. That is,

1 if A obtains1 pA {0 otherwise.
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t, i best responds with probability , and with probability chooses1 " ! !i i

a pure strategy at random. is i’s mutation rate. One may interpret a!i

mutation as i experimenting or making an error, or as one individualji

being replaced by a fresh individual unfamiliar with the history of play.
Our conception of mutations as being dependent upon the influence

neighborhood of a player may be formally defined as follows:

Definition. Given a network game , at each period t there is aNG

matrix

. . .l (t) l (t)11 1n

l (t) p _ 5 _ ,N ( ). . .l (t) l (t)n1 nn

where is a probability distribution. Player"(l (t), . . . , l (t)) p l (t)i1 in i

i’s influence neighborhood (I-neighborhood) at time t is the set
. The size of an I-neighborhood is the car-I (t) p { j ! N : l (t) 1 0}i ji

dinality of this set.

The influence neighborhood probabilities can vary over time periods,
while the graph that defines the network remains fixed. The underlying
intuition here is that changing one’s neighbors is prohibitively costly, but
cost-free communication with nearby players might at times be possible.
So the players’ interaction neighborhoods remain fixed, but their influence
neighborhoods can change rapidly. Note that for a given , we canij ! N
have . This reflects the idea that influence need not be al (t) ( l (t)ij ji

symmetric relation between players. The weights can vary across players
in a I-neighborhood so that influence might vary across players as well
as across time.

The precise manner by which players correlate their strategies is defined
by a variant of the best-response dynamic that incorporates influence
neighborhoods:

Definition. Let be mutually exclusive propositions sucht tA , . . . , Ai1 in

that . Then the BR*-dynamic with influence neigh-tPr (A ) p l (t)ij ij

borhoods ( ) is defined as follows: For ,"l (t) i ! NN

"BR*(t, l (t)) p s (t) 7 1 , (7)t!i i j Aij
j!N

where . In words, Player i imitates the strategys (t) p BR (t, ! , j )i i ii

of Player j with probability if i falls in j’s influence neighborhood.l (t)ij

If at time t we have for all , then no player has influencel (t) p 1 i ! Nii

over other players. For this special case, the BR*-dynamic with influence
neighborhoods reduces to the -dynamic with independent random mu-BR
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tation. At another extreme, if a Player i has a number of other players
falling in her I-neighborhood at period t and for eachl (t) p 1ji

, then all of the players in i’s influence neighborhood are certainj ! I (t)i

to correlate their strategies with i at period t. One might think of this
case as a ‘perfectly disciplined’ influence neighborhood whose members
all follow their leader’s command.

In Examples 2, 3, and 4, a leader Player i with an influence neighbor-
hood appears at random in the network game, and i’s influenceI (t) ( {i}i

probability is constant over the influence neighborhood. This is why in
these examples it makes sense to write for each . Inl (t) p l (t) j ! I (t)ji i i

these examples, a leader’s influence over those in his influence neighbor-
hood is set at random and lasts only for a single time period, save for
the unlikely event that this leader spontaneously mutates over consecutive
time periods. Of course, many other configurations of influence neigh-
borhoods are possible. A leader player might have a fixed influence neigh-
borhood over part of the network game and over an indefinite number
of consecutive periods. Such fixed influence neighborhood leaders have
their analogous counterparts in real life, such as political leaders and
military commanders. If a single Player i is such that for alll (t) p 1ji

time and all , then the entire network is i’s perfectly disciplinedj ! N
influence neighborhood. In this case, i plays a role analogous to Hobbes’
absolute sovereign. As noted above, perfect discipline is an extreme case.
In many actual situations, a leader’s ‘clout’ varies across the population.
Varying influence probabilities reflect a leader’s uneven sway over those
who receive his messages. One virtue of the framework described here is
its flexibility for treating such cases.

When correlated mutations are possible, a variety of long-term out-
comes can emerge, depending upon the payoff structure and the topology
of the interaction network and the influence neighborhoods. If influence
neighborhoods remain fixed and perfectly disciplined over a stretch of
time, the network can remain at a polymorphism of strategies where those
in the influence neighborhoods follow their leaders and the rest converge
to the strategy that defines the stochastically stable equilibrium. Examples
3 and 4 show that stochastically stable equilibria need not be robust
against influence neighborhoods even when these neighborhoods appear
momentarily at random at very low rates. These examples show that there
is no universal convergence property of the best-response dynamic per-
turbed with influence neighborhoods analogous to that of stochastic sta-
bility when all mutations are stochastically independent.

However, it is possible to define convergence concepts for the BR*-
dynamic and to identify some sufficient conditions for convergence. Ex-
ample 2 shows that influence neighborhoods can greatly accelerate the
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convergence of the network to the strategy of the risk dominant equilib-
rium. Examples 2 and 4 suggest the following:

Definition. A state of a network game is an attractor"s p (s*, . . . , s*)1 n

of the BR*-dynamic with influence neighborhoods if for some"l (t)N

state , when , then′ ′" " " "s ( s* s(0) p s

Pr lim s (t) p (1 " 1 s* ! j 7 1 ) p 1 for each i ! N. (8)t ti A i i A( )! !i itr#

If (8) is satisfied for every state , then is the global attractor" " "s ( s* s*
of the BR*-dynamic.

This definition says that is an attractor of a BR*-dynamic if, with"s*
probability one, from an initial state , players who update according"s(0)
to this dynamic all eventually follow , except when they mutate. In"s*
Example 2, is the global attractor of the BR*-dynamic, where(s*, . . . , s*)1 n

each I-neighborhood is a Moore-24 neighborhood of varying discipline.
For any initial state of this network, under this BR*-dynamic all the
players eventually follow except for the occasional I-neighborhood ofs1

-followers that appears and is then eliminated.s2

Proposition 1. If is an attractor of the BR*-dynamic"s* p (s*, . . . , s*)1 n

with influence neighborhoods , then is a Nash equilibrium." "l (t) s*N

Proof. By hypothesis, given some this BR*-dynamic" " "s(0) p s ( s*
satisfies (8). Hence as , with probability one, each Playert r # i !

follows , unless i mutates spontaneously or imitates the strategyN s*i
of a leader in case i falls in this leader’s I-neighborhood. But then

must be a best response for each under the unperturbeds* i ! Ni

BR-dynamic, and so (4) is satisfied. QED

Example 2 shows that a system of BR*-updaters can converge to an
optimal Nash equilibrium even when the I-neighborhoods appear ran-
domly in the network at a very low rate, and the initial state is a sub-
optimal but strict equilibrium. In the remainder of this section, we show
why this is the case and at the same time establish some convergence
conditions for BR*-dynamics. First, we define the notion of BR-stability
for the unperturbed best-response dynamic.

Definition. Given the network game, a set is BR-stable withB P N
respect to if given for each , . Ifs ! S s (t) p s i ! B BR (t ! 1) p si i

B is BR-stable with respect to s, we say that s is BR-stable over B.

Intuitively, a set of the players is B-stable with respect to the pure
strategy s if when all in B start to follow s, the BR-dynamic cannot ‘erode’
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the s-following throughout B even when all the rest of the players in
do not follow s.NG

The following proposition establishes a convergence result for the BR*-
dynamic provided certain BR-stable sets exist.

Proposition 2. In a network game, let I-neighborhoods of bounded
size appear with probability !. Also assume that, for each I-b ! n
neighborhood, the probability that the leader adopts the pure strategy

is . For each I-neighborhood that appears, let be as ! S 1/FSF q 1 0
lower bound on the probability that this neighborhood is of size b,
and let be a lower bound on the probability everyone in thisp 1 0
neighborhood follows the strategy of the leader. If for each I-neigh-
borhood of maximum size b, is the unique BR-stable strategy of"s*
some subset of that I-neighborhood, then is the"s* p (s*, . . . , s*)
global attractor of this BR*-dynamic.

Proof. Let denote the sequence of I-neighborhoods that appears(I )u

in the network lexically ordered according to time. With probability
one, a perfectly disciplined I-neighborhood of maximum size b whose
players follow appears infinitely often in the sequence of plays.s*
Let denote the subsequence of such that is of size b and(I ) (I ) Iu u uk k

each follows , and let denote the sequence of BR-stablei ! I s* (B )u uk k

sets of -followers that appear in as a result. We claim thats* N s*G

satisfies (8), that is, overtakes the network game with probabilitys*
one. Each introduces a number of -followers that remain in theB s*uk

network over time until is disrupted by some influence neigh-Buk

borhood whose players follow some strategy other than . Thus thes*
’s gradually increase the number of -followers in the networkB s*uk

until all but mutants follow unless all but some fixed finite numbers*
of the ’s are disrupted by ‘counter’ I-neighborhoods whose ‘lead-Buk

ers’ follow strategies other than that appear and overlap the ’s.s* Buk

But for this containment of the ’s to occur, a sequence of I-B (A )u uk k

neighborhoods synchronized with the ’s must appear in suchI Nu Gk

that all but a fixed number of the ’s satisfy the following properties:Auk

(i) the leader Player of each follows some strategy other thani Au uk k

, (ii) appears in a part of the network where overlaps ,s* i A Iu u uk k k

and (iii) enough players in imitate ’s strategy to disrupt theA iu uk k

-stability of so that the players in do not continue to follows* B Bu uk k

. (If these conditions are not met, then a subsequence of the ’ss* Buk

is not contained by the ’s and this subsequence then overtakes theAuk

whole network. But if denotes the proposition that for a given′Auk

a matching appears satisfying (i), (ii), and (iii), thenB Au uk k

is some value . For note that the probability that (i)′Pr (A ) h ! 1u uk k

occurs is fixed by hypothesis. The probability that (ii) occurs is some
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fixed number, for there are only so many ways a I-neighborhood of
size b can overlap one of the ’s. The probability that (iii) occursBuk

is bounded from above, since the ‘best case’ scenario for the ‘dis-
rupters’ is if overlaps perfectly with and then sufficiently manyA Bu uk k

players in imitate to destabilize the strategy in . So theA i s* Bu u uk k k

’s are bounded from above by some . Hence if denotes the′h h ! 1 Auk

event that the necessary sequence of ’s appears to contain theAuk

’s, thenBuk

′ ′Pr (A ) p Pr (A for all but finitely many u )u kk

. . .p lim h hu uk k1 mmr#

m≤ lim h p 0.
mr#

QED

The key idea behind Proposition 2 is that BR-stable sets of -followerss*
appear in the network game and tend to persist, even when they do not
appear in consecutive time periods and are not contiguous in the network.
So with probability one, the appearance of these BR-stable sets together
with the forces of the BR*-dynamic results in overtaking the entires*
network game. This argument differs considerably from the proofs of the
stochastic stability results for independent random mutations in works
such as Young (1993, 1998), Ellison (1993, 2000), and Morris (2000), which
consider the behavior of a network game in the rare event that sufficiently
many independent mutations occur consecutively so as to drive the system
out of and away from an equilibrium. Note also that the premises of
Proposition 2 do not bias the BR*-dynamic to make the influence neigh-
borhoods of any one strategy more likely to appear or to persist over
time than another. Finally, note that the proof of Proposition 2 does not
depend upon specific values of !, q, or p as stated in the hypotheses. So
the BR*-dynamics that satisfy these hypotheses ultimately overtake the
entire network game no matter how infrequently BR-stable sets of -s*
followers appear, as long as they appear with some positive probability
at each period.

We can now identify certain network structures where a BR*-dynamic
that is not biased in favor of any pure strategy will converge to risk
dominant equilibrium play. A network is c-regular if each Player isN
linked with exactly c other players.

Corollary 3. Let be c-regular, and let denote the risk dom-N (s*, s*)
inant equilibrium of the base game G. Let I-neighborhoods of
bounded size appear with probability ! where, for each I-neigh-b ! n
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borhood, the probability that the leader adopts the pure strategy
is . For each I-neighborhood that appears, let be as ! S 1/FSF q 1 0

lower bound on the probability that this neighborhood is of size b,
and let be a lower bound on the probability everyone in thisp 1 0
neighborhood follows the strategy of the leader. If for each I-neigh-
borhood with b members, a nonempty subset of is suchI (t) B I (t)i i i

that each player in is linked with at least players in , thenB c/2 I (t)i i

is the global attractor of this BR*-dynamic."s p (s*, . . . , s*)

Proof. As in the proof of Proposition 2, let denote the sequence(I )u

of I-neighborhoods that appears in the network lexically ordered
according to time periods. With probability one, a subsequence

, where is of size b and each follows appears in the(I ) I i ! I s*u u uk k k

sequence of plays. By hypothesis, each contains a nonempty subsetIuk

whose member nodes are each linked with at least players inB c/2uk

. Since is risk dominant, is the unique best response forI (s*, s*) s*uk

each at subsequent time periods, because at least half of i’si ! Buk

N-neighbors followed . Hence is the unique BR-stable strategys* s*
for each in the sequence , so all of the hypotheses of Prop-B (B )u uk k

osition 2 are satisfied. QED

Corollary 3 establishes that when the base game has a risk dominant
equilibrium, a large class of BR*-dynamics will converge to risk dominant
equilibrium play in the special case where the interaction network is uni-
formly linked, as are the one-dimensional circular network games ana-
lyzed by Ellison (1993) and the two-dimensional lattice of Examples 2
and 3. Moreover, we can now explain why random mutations failed to
overthrow the suboptimal equilibrium of the lattice network(s , . . . , s )2 2

of Assurance games in Example 1 while in Example 2 influence neigh-
borhoods that entered the same network game rapidly moved the system
to the equilibrium. In order for any BR-stable set of s1-(s , . . . , s )1 1

followers to appear in the network, at least 12 players in a ‘cross’ con-
figuration must simultaneously mutate to s1. Given stochastic indepen-
dence with , the probability that even one such group of 12! p .05i

appears in the network over 100 million generations is bounded from
above by .19 So it is not surprising that in Example 1 the independent"242
s1-mutants failed to establish a stable bridgehead in the network game
over a million generations even though they appeared at such a high rate.

19. If denotes the event that at least one BR-stable set appears at round , thenS(t) t
12 12 121 1 14 12 4 "8 24Pr (S(t)) ≤ 10 ! p 10 p 10 7 2 ,i ( ) ( ) ( )2 20 2

so .8 "24. . .Pr (S(1) ∨ ∨ S(10 )) ≤ 2
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In Example 2, even though I-neighborhoods appeared at a rate of only
.001, some of the I-neighborhoods of s1-followers that appeared intro-
duced BR-stable sets. Each I-neighborhood was a Moore-24 neighbor-
hood, and since the network game was 8-uniformly linked, all but the
four ‘corner’ players of a given I-neighborhood were linked with at least
four players in the same I-neighborhood. So when a perfectly disciplined
I-neighborhood of s1-followers appeared in the network game surrounded
by s2-followers, the corner players converted to s2 on the subsequent round
of play but the remaining 20 players formed a BR-stable set of s1-followers
that persisted in the game. While these BR-stable sets appeared seldom
in the network due to the very low leader mutation rate, they started a
steady contagion of s1-followers that rapidly overtook the network.

Proposition 2 and Corollary 3 are fundamental convergence results for
BR*-dynamics. They show that for certain classes of network games,
influence neighborhoods large enough to introduce BR-stable sets will
ultimately drive a network game to a unique Nash equilibrium, no matter
how infrequently leader mutants appear. However, these results cannot
be generalized to all network games. Example 3 shows that if the inter-
action network is not uniformly linked there might be no global attractor,
or even a stable equilibrium, of a BR*-dynamic that introduces influence
neighborhoods following each pure strategy at equal rates. Example 4
shows that under a BR*-dynamic that introduces influence neighborhoods
at rates and of sizes that vary across pure strategies, a nonuniformly linked
network game can converge to an equilibrium of nonrisk dominant play
that is robust against a high rate of spontaneous mutation. Plainly, the
impact of correlated influence neighborhood mutation varies according
to the network structure and the specifics of the influence neighborhoods.

5. Conclusion. We have shown that correlated mutations profoundly in-
fluence the evolution of strategies across local interaction structures. Pre-
vious work established that when the base game of any network game
has a risk dominant equilibrium, risk dominant play characterizes the
unique stochastically stable state of the best-response dynamic (Ellison
1993; Young 1998). The generality of this result suggests that the payoffs
of the base game alone determine the long-term limits of dynamical up-
dating. However, the examples in this paper show that the tight connection
between risk dominant play and dynamic stability dissolves when one
relaxes the assumption that all mutations are stochastically independent.
Network structure does play a role in determining where the players end
up when the correlated mutations of influence neighborhoods can appear.
Correlation via influence neighborhoods can help drive a network of play-
ers to a stable equilibrium of risk dominant play, or to some other stable
equilibrium. And it is possible that no state is stable when influence neigh-
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borhoods enter into the network game, even when this game has a unique
stochastically stable equilibrium of risk dominant play.

Correlation via influence neighborhoods also dramatically accelerates
the evolution of equilibria in some network games. We have seen that
when only independent mutations are possible, the players in a network
game can find themselves trapped at a suboptimal equilibrium that is not
stochastically stable for a very long time. While according to theory,
independent mutations will ultimately drive the network game to the
stochastically stable equilibrium, this process may take so long that sto-
chastic stability cannot be the basis for any realistic explanation of the
emergence of a new optimal social equilibrium in human communities.
Communities of people do occasionally reform their practices, and the
process does not typically occur as the result of independent aberrations
in behavior over millions of consecutive interactions. Successful reform
requires coordinated departures from incumbent practice. Typically, such
coordination requires planning, communication and leadership. Such co-
ordination also succeeds by generating a ‘bandwagon’ effect that spreads
quickly through society. Influence neighborhoods prove useful for mod-
eling this coordination. Moreover, an optimal equilibrium that indepen-
dent mutation never produces over millions of periods of interaction can
emerge quite rapidly under the correlated mutations of influence neigh-
borhoods. We believe that influence neighborhoods can be a valuable tool
for analyzing social change.

Most of the literature on network games, including the stochastic sta-
bility literature, develops quite general convergence results from powerful
assumptions that are mathematically convenient but not really well
founded. In this paper, we have explored some of the consequences of
relaxing one of these assumptions, namely, that all mutations are sto-
chastically independent. Not surprisingly, we do not get convergence the-
orems for influence neighborhood dynamics as general as those of the
stochastic stability literature, but we do get what we think is a more
realistic model of how strategies develop over local interaction structures.
Future work should investigate the consequences of relaxing some of the
other robust assumptions common in the network game literature, in
conjunction with relaxing the stochastic independence assumption. Players
might not be so myopic as the literature assumes. Updating rules more
sophisticated than the best-response dynamic should be explored. Players
might not always interact with the same neighbors. Some authors have
already proposed models where the interaction network itself evolves over
time (Skyrms and Pemantle 2000; Goyal and Vega-Redondo 2000; Watts
2001, Jackson and Watts 2001a, 2001b). Combining different learning
rules and evolving network structures with influence neighborhood mu-
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tation may produce a theory of network games that has much greater
explanatory power than the existing theory.
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