GAME THEORY

Game theory is the branch of decision theory that
analyzes interdependent decision problems be-
tween rational, strategic agents. A rational agent
is one who has a consistent set of preferences de-
fined over some set of possible outcomes and who
makes choices consistent with these preferences. A
strategic agent is one who, given these preferences,
reasons about the best course of action to take in
order to satisfy them. Interdependent decision pro-
blems arise when the outcome for any particular
agent depends upon the actions chosen by all of
the agents; that is, when the optimal choice for
an agent A4 depends upon the choices made by
other agents, and the optimal choice for the other
agents depends in turn upon the choice made by A.
It is this strategic feature that distinguishes game-
theoretic problems from simpler decision problems
such as parametric choice under conditions of risk
or uncertainty.

The birth of modern game theory is usually at-
tributed to von Neumann and Morgenstern (1944).
However, precursors to game-theoretic analyses
of strategic problems can be found in Zermelo
(1913), Borel ([1921] 1953), and von Neumann
([1928] 1959), as well as in the works of Hob¥es
and Hume.
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A Theory of Utility

One of von Neumann and Morgenstern’s primary
contributions was their development of a mathe-
matical theory of utility, allowing one to define, for
a given agent, an interval utility measure unique up
to a strictly increasing affine transformation. The
need for such a notion of utility originates in the
fact that in game theory, agents often need to make
decisions under conditions of risk or uncertainty,
and hence one needs a measure of how strong their
preferences for a given outcome are.

If an agent’s preferences over outcomes satisfy
certain basic coherence criteria, it is possible to
define a utility function with the property that if
one makes choices consistent with one’s pre-
ferences, one acts as if one were choosing to maxi-
mize expected utility. The following axioms (from
Luce and Raiffa’s [1957] classic text Games and
Decisions) formalize the coherence criteria neces-
sary to satisfy in order to define a von Neumann—
Morgenstern utility function. Let 4 = {ay, ..., a,}
denote the set of outcomes, and let a; X a; denote
that the agent either prefers a; over g; or is indiffer-
ent between them. A lottery L = (p1ay, - .. ,Pn@y) 18
simply a randomization over outcomes, where the
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outcome a; occurs with probability p;. A compound
lottery Q = (q1Ly, -..,qmLm) is a lottery over lot-
teries, where the chance that the lottery L; occurs

is q;.

Ordering of Alternatives

For any outcomes a;, a;, and g, either a; < a; or g;
< a; (and possibly both). Moreover, the relation
“X” is transitive; that is, if ¢; X a; and a; 3 ay, then
a; < Aj.

Reduction of Compound Lotteries

Let L' = (pia,pias, ... ,pLa,) be a lottery, for
i=1,...,m. Then the agent is indifferent between
the compound lottery (q1L!, ¢2L?, ..., qnL™) and
the simple lottery (piay, ...,pnan), wWhere p; =
Qp; +@p} + -+ Gu}

Continuity

Suppose that a, < a,_; 2 ... X a;. Then there
exists a number u; such that the agent is indifferent
between a; and the lottery [w;a;,0eas,...,0.
oa,_1, (1 — u;)ay], which is denoted 4.

Substitutibility
In any lottery, d; is substitutable for a;.

Transitivity of Lotteries
The preference and indifference relations over
lotteries are transitive relations.

Monotonicity

A lottery (pay, (1 — p)ay,) is preferred or indiffer-
ent to (p'a;, (1 — p)ay) if and only if p > p'.

If an agent’s preferences satisfy the above
axioms, it is possible to find a number u; for
each outcome g; such that for any two lotteries
L and L' the magnitudes of the expected
values pjuy + ... + puu, and plug + ... + pLu, in-
dicate the preference between the lotteries. From

(a) Game of perfect information

324

(b) Game of imperfect information

this assignment of utilities to the basic alternatives,
one can construct a utility function f over the set of
risky - alternatives (the lotteries). Consequently,
when an agent makes choices consistent with
her preferences, she acts as if she is choosing to
maximize personal utility as measured by f.

Representations of a Game

Games are most commonly represented in an
extensive or a strategic form. One also finds the
strategic form referred to as the normal form, fol-
lowing von Neumann and Morgenstern, who be-
lieved that normally one should reduce the
extensive form of a game to the strategic form for
the purpose of analysis.

The extensive form uses a game tree to represent
the order of play (see Figure 1). Each node in the tree
represents a choice point for a particular player; the
player whose turn it is to move at a particular choice
pointisindicated by a label attached to the node. All
games have a privileged node, the root or initial node
where the game begins. The leaves of the tree, also
known as terminal nodes, represent endpoints, or
outcomes, of the game. Every node in the game tree
except for the terminal nodes has at least one edge
lying on a path between it and a terminal node; such
edges represent choices available to a player at that
choice point. In some games, the moves available to
a player depend not only on the previous moves of
other players, but on the outcome of a chance event
like the roll of a die. Such games may be represented
by including a fictitious player in the game tree,
Chance, whose available moves at a point corre-
spond to the possible outcomes of the random
event. A player’s choice at a given point is a move
in the game, and each edge has an attached label
naming the move. A path from the root node to a
terminal node is one possible play of the game.
In Figure 1, terminal nodes are labeled with W or
L, meaning that Player 1 wins or loses the game,
respectively.

Fig. 1. A simple two-player game in
extensive form. Terminal nodes
labeled “W” and “L” indicate whether
Player 1 wins or loses, respectively.



If all players know their exact position in the
game tree at every point, the game is said to be
one of perfect information; all other games are of
imperfect information. Although players do not
always know their exact position in the game tree
in a game of imperfect information, they often
know that their position is one of a limited num-
ber of possible nodes. This subset of nodes is a
player’s information set. In an extensive form
game, a player’s strategy specifies the choices that
the player would make at each of his information
sets. A player’s information sets are indicated in the
game tree by grouping together those nodes among
which the player cannot distinguish. Thus, an al-
ternative definition of a game of perfect informa-
tion is one in which all information sets contain
only a single node. Figure 2b illustrates a game of
imperfect information in which Player 1 moves
first but keeps the move hidden from Player 2.
When it is Player 2’s turn to move, he does not
know whether the choice occurs at the left or the
right side of the game tree.

The strategic form of a game is a minimal re-
presentation that omits all information about the
game except for the relationship between strategies
and payoffs. The strategic form of a game consists
of a set of players P = {1, ...,N}, a set of pure
strategies S; for each player i € P, and, for each
player i, a payoff function u; that maps pure stra-
tegy profiles ¢ = (g1,...,08) €S X ... x Sy to a
real number r. In a two-player game, the strategic
form can be represented as a matrix, where each
row corresponds to a strategy for Player 1, each
column a strategy for Player 2, and each cell the
resulting payoffs obtained by Players 1 and 2 when
they choose those respective strategies.

Gianni Schicchi

(0, 100)

Stay silent Expose Schicchi
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In many cases, it proves convenient to allow
players to adopt mixed strategies, where they
choose a pure strategy at random according to
some probability distribution defined over the set
of pure strategies S;. The payoff for a mixed stra-
tegy &; is defined to be the expected payoff
>, P(c|@;)ui(o), where the sum is over all strategy
profiles ¢ and P(o | 6;) denotes the probability that
the strategy profile ¢ occurs when player i adopts
the mixed strategy &;.

Although it is often said that which form one
uses to represent a game is merely a practical ques-
tion, on the grounds that any game represented in
one form may be represented in the other, this is a
topic of some debate. To begin with, it is clear that
moving from the extensive form to the strategic
form results in a loss of information, for it is possi-
ble for two different extensive games to have the
same strategic form. In some cases, this lost infor-
mation may be relevant to the analysis of the game;
if so, it may not always be possible to adequately
analyze a game just given its strategic form (see
Harper 1988). For example, Figure 2 illustrates
the strategic and extensive forms for the decision
problem central to Puccini’s opera Gianni Schicchi,
in which the causal dependencies between the
players’ choices are lost in the normal form, yet
seem crucial to the game’s analysis.

Noncooperative Games

In a noncooperative game, players independently
decide what strategy to adopt in the light of their
knowledge of the other players and the payoff
matrix. Most of the classical results in game theory
have been obtained for noncooperative. games, for

Stay silent, if
Schicchi awards
fortune to self

Expose Schicchi, if
Schicchi awards
fortune to self

Relatives
(-200, -200) Self

(0, 100)
(100, 0)

(0, 100)

(100, 0) (-200,-200)

(a) Gianni Schicchi, extensive form (b) Gianni Schicchi, strategic form
Fig. 2. Strategic and extensive form of the Gianni Schicchi. In Puccini’s opera Gianni Schicchi,
the wealthy Buoso Donati dies, and before his will is read, his relatives learn that he has willed
a large portion of his fortune to friars. They conspire to have a noted mimic, Gianni Schicchi,
impersonate Buoso Donati on his deathbed in order to dictate a new will. Gianni Schicchi
agrees but while impersonating Buoso Donati and dictating a new will, he declares his wish to
leave a large portion of his fortune to his devoted frienfl Gianni Schicchi. The relatives
contemplate notifying the authorities but decide against it, knowing that the punishment for
tampering with a will is banishment and amputation of a hand.

325



GAME THEORY

the inability of players to form coalitions and enter
into binding agreements make noncooperative
games much easier to analyze. Some game theorists
(such as Nash) also have a methodological reason
for concentrating on noncooperative games: These
theorists hold that such games are “more basic”
than cooperative games and that the appropriate
way to solve a cooperative game is first to trans-
form it into a noncooperative game. However,
these views are not universally held (see Osborne
and Rubinstein 1994; Binmore 1992).

A solution of a game is a specification of the
outcomes that may be expected to occur when the
game is played by rational agents. Two widely used
techniques for solving noncooperative games are
dominance arguments and equilibrium analysis.
The goal of each of these approaches is to identify,
for each player, a best-response strategy to the
anticipated play of all other players. Given a strat-
egy profile o, the strategy o; is a best-response for
player i if w(o_;,0:) > ui(o_;,05) for all o; € S,
where o_; denotes the set of strategies in the profile
o for the opponents of player i.

A dominance argument rules out certain strate-
gies for play on the grounds that those strategies
are inferior to other alternatives, where an inferior
strategy is one that is either weakly or strictly
dominated: A strategy o is weakly dominated if
there exists another strategy ¢’ such that the payoff
from ¢’ is never worse than the payoff from ¢, and
there is at least one instance in which the payoff
from ¢’ exceeds that of . A strategy o is strongly
dominated if there exists another strategy o* such
that the payoff given by o* always exceeds the
payoff given by ¢.

Iterated elimination of strongly dominated stra-
tegies is a procedure for transforming games into a
reduced form. One eliminates the strongly domi-
nated strategies for Player 1, transforming the
game G to the game G’, and then eliminates the
strongly dominated strategies for Player 2 from G’
to obtain G”, repeating this procedure until no
strongly dominated strategies for any player re-
main. At the end, one obtains a reduced game G*
with the property that every remaining strategy for
every player is a best-response to some possible
strategy profile. In addition, the resulting game
obtained does not depend on the order or the rate
at which strongly dominated strategies are
removed. This result does not hold for iterated
elimination of weakly dominated strategies. The
resulting game G* obtained by iterated elimination
of weakly dominated strategies may depend on the
order in which strategies are eliminated, as shown in
Figure 3. It is never rational to play a strongly
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dominated strategy, but there are cases where it is
not irrational to play a weakly dominated strategy.
Although some game theorists freely apply iterated
dominance arguments to reduce the complexity
of games, others caution against adopting this
as a general approach toward their solution (see
Binmore 1992).

Although dominance arguments are useful in
analyzing a game, the primary tool of analysis in
noncooperative game theory is a Nash equilibrium.
A strategy profile ¢ is a Nash equilibrium if each
player’s strategy is a best-response to the strategies
selected by the rest of the players; alternatively, a
Nash equilibrium occurs when no player’s expected
payoff improves by adopting a different strategy
unless another player adopts a different strategy as
well. More formally, a strategy profile ¢ = (o4, .. .,
oy) is a Nash equilibrium if, for 1 < i < N,
ui(o) > ui(o_;,s;) for all s; € S;. The wide ac-
ceptance of the Nash equilibrium for solving
games derives from the fact that it is the only
such concept compatible with the rules of the
game, the rationality of the players, and the in-
dependent selection of strategies all being com-
mon knowledge. (For a discussion of common
knowledge, see Lewis 1969.)

If players are restricted to pure strategies, not all
games have a Nash equilibrium. The game of
Matching Pennies, shown in Figure 4, has no
Nash equilibrium when the players are restricted
to playing either heads or tails. If players may
adopt mixed strategies, then it can be shown that
all finite games (that is, games in which each player
has only finitely many strategies) have at least one
Nash equilibrium (Nash 1950).

H Ha
o (1,1) 0,0)
o (1,1) 2,1)
o3 (0,0) 2, 1)

Fig. 3. A game in which order matters for the iterated
elimination of weakly dominated strategies.

Heads Tails
Heads (1,-1) (-1,1)
Tails (-1,1) (1,-1)

Fig. 4. Matching Pennies, a game with no Nash equilibTia
(in pure strategies).



Refinements of Nash Equilibrium

Although it is generally agreed that a solution to a
game must be a strategy profile in a Nash equilib-
rium, this provides only a necessary, not a suffi-
cient, condition. In general, Nash equilibria lack
several desirable properties: They need not be
unique, they need not be optimal, and they may
allow players to make incredible threats or pro-
mises. The game Battle of the Sexes, shown in
Figure 5a, has two Nash equilibria, (Boxing, Box-
ing) and (Ballet, Ballet). The well-known Prisoner’s
Dilemma, illustrated in Figure 5b, has (Defect,
Defect) as its sole Nash equilibria, yet this outcome
yields a payoff of 2 to each player, whereas the
outcome (Cooperate, Cooperate) yields payoffs
of 3. In the game G (Binmore 1992), (rr, LLL) is a
Nash equilibrium, but note that this strategy pro-
file requires that Player 2 commit to playing L at
node N, an irrational move, as Player 2 would
thereby lose the game if that node were reached,
whereas Player 2 would win by playing R. Conse-
quently, a number of refinements and extensions
to the concept of a Nash equilibrium have been
introduced, two of which are discussed below.

Subgame Perfect Equilibrium

Each node v in an extensive game G induces a
subgame of G. A subgame is produced by keeping
the node v, along with the subtree rooted at v,
and deleting the rest of the game. If ¢ is a Nash
equilibrium of G, it need not be true that ¢ is a
Nash equilibrium for every subgame of G as well.
Selten (1965) introduced a refinement of the Nash
equilibrium concept known as a subgame perf-
ect equilibrium, which requires that a strategy pro-
file ¢ be a Nash equilbrium for every subgame as

Boxing  Ballet
Boxing (2,1) (0,0)

(a) Battle of the sexes (b) The prisoner's dilemma

(c) The game G

Cooperate  Defect
Cooperate (3,3) (1, 4)
Ballet 0,0) (1,2) Defect 4,1) 2,2
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well. It has been shown that every finite extensive
game of perfect information has at least one sub-
game perfect equilibrium. Since every subgame per-
fect equilibrium is also a Nash equilibrium,
subgame perfection counts as a refinement of the
concept of a Nash equilibrium, because it often
eliminates Nash equilibria that are unlikely to be
adopted by rational players, such as the strategy
profile (rr, LLL) in the Prisoner’s Dilemma game
of Figure 5b.

Correlated Equilibrium

The definition of a Nash equilibrium assumes
that the selection of strategies by players occurs
independently. Aumann (1974 and 1987) defined
a notion of correlated equilibrium for nonco-
operative games. By correlating on shared infor-
mation about the state of the world (although the
information need not be the same for all the
players), it is possible for players to arrive at an
equilibrium that is self-enforcing in the sense
that no player would have reason to deviate from
equilibrium play. The fact that correlated equili-
bria are self-enforcing is significant because it
means that adhering to a correlated equilibrium
does not require the existence of a binding agree-
ment among the players. In many cases, adopting
a strategy profile in correlated equilibrium re-
wards each player with a higher expected payoff
than she could receive in the absence of correlation.
For example, consider the game of Battle of the
Sexes from Figure 5a and suppose that the players
have shared information about the result of a
toss of a fair coin. If both players (independently)
adopt the strategy of going to a boxing match
whenever the coin turns up heads and going to

Fig. 5. Games with multiple or suboptimal Nash
equilibria.
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the ballet whenever the coin turns up tails, each
player has an expected payoff of 3, a significant
improvement upon their expected payoffs in the
absence of correlating their strategies. It has been
proven that the set of correlated equilibria always
contains the set of Nash equilibria and hence is an
extension of the concept of a Nash equilibrium.

Cooperative Games

In a cooperative game, players can enter into bind-
ing agreements in which they are committed to
playing certain strategies. Whereas strategy profiles
in noncooperative games need to be self-enforcing
(e.g., a Nash equilibrium) in order to be plausible
outcomes of play, in cooperative games the binding
agreement can be used to bring about any possible
outcome. Of the many possible outcomes, how
should one be selected?

Nash (1950 and 1953) proposed the following
approach to analyzing cooperative games: Al-
though players may enter into a binding agreement,
they need not. If they choose not to, then there is a
noncooperative game in which each player can,
adopting the appropriate mixed strategy, be as-
sured of a certain minimum expected payoff; call
this outcome the disagreement point. The original
cooperative game can thus be conceived as a bar-
gaining problem in which players seek to improve
their situation by moving away from the disagree-
ment point to a new, more desirable point con-
ferring greater utility. Exactly which point is
selected depends upon the particular arbitration
scheme used. An arbitration scheme can be thought
of as a function mapping the set of possible out-
comes to a single outcome—the solution offered by
the arbitrator. A cooperative game, then, can be
conceived as an extensive form of a noncooperative
game where the early stages of the game involve
the selection of the disagreement point and the
arbitration scheme. This approach, of reducing
cooperative games to noncooperative games, is
known as the Nash program.

Nash argued that a reasonable arbitration
scheme for 'a bargaining problem should satisfy
the following four conditions:

* Pareto optimality: It is not possible to increase
any player’s utility without decreasing another
player’s utility.

* Independence of irrelevant alternatives: The se-
lection of the outcome of the bargaining prob-
lem should not depend upon alternatives
which were not chosen. (One should be
aware that Nash’s proposed solution is not
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universally accepted. This axiom is generally
viewed as the most controversial.)

* Symmetry: If the set of outcomes is symmetric,
then the solution point awards the same pay-
off to all players.

¢ Invariance: Since utility functions are unique
only up to a strictly increasing affine transfor-
mation, no player should be able to affect the
solution point by rescaling his or her ut:hty
function.

The fact that there exists a unique outcome satisfy-
ing these four conditions was proved by Nash
(1950) for the two-person case.

Solution concepts differing from the one sug-
gested by Nash have been defended by Kalai and
Smorodinsky (1975), Braithwaite (1954), and
Gauthier (1986). The Kalai-Smorodinsky solution
has a natural geometric construction that illus-
trates the underlying intuitions. Define the “Uto-
pia point” as the outcome awarding each player
the maximum amount of utility possible for the
game under consideration. In all cases of interest,
the Utopia point lies outside the set of feasible
solutions. Draw a line / connecting the disagree-
ment point to the Utopia point. The point of inter-
section between / and the Pareto frontier is the
Kalai-Smorodinsky solution. That is, the Kalai-
Smorodinsky solution is the point arrived at
when each player makes “appropriate” relative
concessions from the Utopia point. The solution
point identified by the Kalai-Smorodinsky solution
is often not the same point as that identified by the
Nash axioms.

Evolutionary Game Theory

Evolutionary game theory originated as an appli-
cation of game theory to biology, arising from the
realization that frequency-dependent fitness intro-
duces a strategic aspect into evolution. Evolution-
ary game theory has since become an object of
interest to economists in part because the ratio-
nality assumptions underlying it are more appro-
priate for modeling strategic deliberation by real
humans, who are only boundedly rational, as op-
posed to the perfectly rational agents modeled by
traditional game theory. In addition, evolutionary
game theory provides a way of modeling the dy-
namics of strategic interaction in a way not possible
with the traditional theory of games. Recall that
the only way to model the temporal aspect of a
game is to use the extensive form of representation.
However, methods of analyzmg extensive games
typically proceed by envisioning that players select



Rock Paper Scissors
Rock (1,1 (0,2 2,0)
Paper (2,00 (@1,1) (0, 2)
Scissors  (0,2) (2,0) (1,1)

Fig. 6. The game of Rock—Paper—Scissors.

a strategy at the beginning of the game that speci-
fies their course of action at each choice point,
which really does not model the dynamical aspect
of the game.

The primary equilibrium concept in evolutionary
game theory is that of an evolutionarily stable strat-
egy (see Maynard Smith 1982). A strategy is evolu-
tionarily stable if when almost every member of the
population follows it, no individual who adopts a
novel strategy can successfully invade. If ¢ is evolu-
tionarily stable, the fitness of an individual follow-
ing ¢ must be greater than the fitness of an
individual following u (otherwise the individual fol-
lowing u would be able to invade, and so ¢ would
not be evolutionarily stable). Let F(sy, 5,) denote the
change in fitness for an individual who plays the
strategy s; against an opponent playing the strategy
s,. Then o is evolutionarily stable if and only if:

F(o,0) > F(u,0)
or

F(o,0) = F(p,0) and F(o,p) > F(u, u).

If a strategy is evolutionarily stable, it must be a
best reply against itself, for, if not, a mutant strategy
would be able to invade. This means that all evolu-
tionarily stable strategies are Nash equilbria when
played against themselves. However, not all games
have evolutionarily stable strategies, and not all
Nash equilibria are evolutionarily stable. The game
of Rock-Paper—Scissors, shown in Figure 6, has a
unique Nash equilibrium in mixed strategies where
each individual plays Rock, Paper, or Scissors with
probability §, but no evolutionarily stable strategy.

J. McKENZIE ALEXANDER
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