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Abstract A model for inventing new signals is introduced in the context of sender–receiver
games with reinforcement learning. If the invention parameter is set to zero, it reduces to
basic Roth–Erev learning applied to acts rather than strategies, as in Argiento et al. (Stoch.
Process. Appl. 119:373–390, 2009). If every act is uniformly reinforced in every state it
reduces to the Chinese Restaurant Process—also known as the Hoppe–Pólya urn—applied
to each act. The dynamics can move players from one signaling game to another during the
learning process. Invention helps agents avoid pooling and partial pooling equilibria.

Keywords Signals · Invention · Reinforcement · Chinese Restaurant Process ·
Hoppe–Pólya urn

1 Introduction

Sender-receiver signaling games were introduced by Lewis [11] and in more general form
by Crawford and Sobel [5]. Nature picks a state of the world, with some fixed probability,
from a set of states. One player, the sender, observes the state and picks a signal from some
arbitrary set of signals. (Signals are arbitrary in the sense that they are not assumed to have
preexisting meaning or salience.) A receiver observes the signal and chooses one of a set
of acts. Payoffs are jointly determined by the state of the world and the act taken. It is
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interesting to investigate whether some form of adaptive dynamics of evolution or learning
can spontaneously generate meaningful signaling.

Recent investigations have demonstrated unexpected complexity in the dynamics of very
simple signaling games with strong common interest. Suppose that there are the same num-
ber of states, signals and acts. Suppose that for each state there is a unique act, such that the
payoff for both sender and receiver is 1 if the act is chosen, and 0 otherwise. (In this case
one says there is pure or strong common interest.) A sender strategy is a map from states to
signals, a receiver strategy a map from signals to acts. If we give the act that pays off in a
state the same index as the state, we can define a signaling system equilibrium as a pair of
sender and receiver strategies whose composition maps the ith state to the ith act for each
index i. This is obviously the most desirable situation to be in.

At the opposite extreme, there are also complete pooling equilibria, in which the sender
sends the signals with probability independent of the state, the receiver does acts with prob-
ability independent of the signal received, and consequently the probability of an act being
taken does not depend on the state Nature has chosen. Provided there are more than two
states, there are also partial pooling equilibria in which some but not all states are pooled.
(This means that the states and their corresponding acts can be divided into subsets, such that
within a subset one has complete pooling: the probability of doing acts in the subset does not
depend on states in the subset, and for each state in the subset the sum of the probabilities
of the acts in the subset sum to one.)

In these special games, signaling system equilibria are distinguished from an evolution-
ary point of view by being the unique evolutionarily stable states [18]. It might then seem
plausible that replicator dynamics [17] would always lead to a signaling system equilibrium,
but this turns out not to be true [9, 12]. In the special case of 2 states, 2 signals and 2 acts
with pure common interest and where nature chooses states with equal probability, it is true.
But if states are not equiprobable, the connected component of pooling equilibria has a basin
of attraction of positive measure. And with 3 states, 3 signals, and 3 acts, partial pooling
equilibria have a basin of attraction of positive measure even if nature chooses states with
equal probability.

With reinforcement learning, the situation is more complicated. Argiento et al. [2] con-
sider the basic reinforcement learning scheme of Roth and Erev [15], Erev and Roth [7],
applied to 2 state, 2 signal, 2 act signaling games with pure common interest and equiprob-
able states. It generates a stochastic process as follows. The sender has an urn for each state,
each containing two colors (say yellow and blue). When the sender observes a state, she
draws a ball from the urn for that state. If she draws a yellow ball she sends signal one; if
she draws a blue ball she sends signal two. The receiver has an urn for each signal, each
containing two colors (say red and green). Upon receiving a signal, the receiver draws a
ball from the urn corresponding to the signal. If the ball is red he does act one; if green, act
two. In the case of both sender and receiver, the original balls drawn are then returned. In
addition, if the right act for the state is done both sender and receiver also add an extra ball
of the same color drawn to the selected urns. This is then repeated. (The initial number of
yellow and blue balls in the sender’s urns, and the initial number of red and green balls in
the receiver’s urns can be arbitrary.) Using stochastic approximation theory, Argiento et al.
[2, Theorem 1.1] prove that with probability one the players converge to a signaling system;
if the initial distribution of colors is uniform, each signaling system has equal probability of
being selected. Simulation studies suggest this result does not carry over to the case where
states are not equiprobable, because players may sometimes converge to pooling.

Pooling is inefficient and undesirable. Why can’t the agents simply invent new signals
to remedy the situation? We would like to have a simple, easily-studied model of such a
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process. That is to say, we want to move beyond closed models where the theorist fixes the
signals, to an open model in which the space of signals itself can evolve. We would like
to suggest such an open model here. This involves a kind of hybrid of the Roth–Erev urn
process and the Chinese restaurant process—the latter being also known in another guise as
the Hoppe–Pólya urn.

2 The Chinese Restaurant Process and the Hoppe–Pólya Urn

Imagine a Chinese restaurant, with an infinite number of tables, each of which can hold an
infinite number of guests. People enter one at a time and sit at either an occupied table or
an unoccupied one. Imagine there is also a ghost—a phantom guest—who is always sitting
at one, otherwise unoccupied, table. The probability that a guest sits down at a table is
proportional to the number already at that table, including the phantom guest. (So that if n

guests have been seated, the probability of the next guest joining the phantom is 1/(n+ 1).)

The first person to enter sits at the first unoccupied table, since no one but the phantom
guest is there. The phantom guest then moves to an unoccupied table. The second person
to enter now has equal probability of either sitting with the first, or sitting at the table with
the phantom, resulting in a new occupied table. Should the second person join the first, the
third person entering the room has a 2/3 chance of sitting at their table and a 1/3 chance of
starting a new occupied one. Should the second person start a new table, the phantom guest
moves on, and the third person will join one or the other, or start a third occupied table, all
with equal probability. This is the Chinese Restaurant Process which has been studied as a
problem in abstract probability theory [1, 13]. It is equivalent to a simple urn model, and
this urn scheme can be modified to represent reinforcement learning with invention.

In 1984 Hoppe introduced what he called “Pólya-like Urns” in connection with “neutral”
evolution—evolution in the absence of selection pressure. In the classical Pólya urn process,
we start with an urn containing various colored balls. Then we proceed as follows: A ball is
drawn at random and then returned to the urn with another ball of the same color. All colors
are treated in exactly the same way. We can recognize the Pólya urn process as a special
case of reinforcement learning in which there is no distinction worth learning—there are no
states, no acts, and reinforcement always occurs. It is a standard result that the probabilities
in a Pólya urn process (the fraction of each color present) almost surely converge to some
random limit. (That is, they are guaranteed to converge to something, but that something can
be anything.)

To the Pólya urn, Hoppe [10] adds a black ball—the mutator. The mutator brings new col-
ors into the game. If the black ball is drawn, it is returned to the urn and a ball of an entirely
new color is added to the urn. (Hoppe allowed that there might be more than one black ball,
corresponding to multiple phantom guests in the Chinese restaurant process. Here, however,
we will stick to the simplest case.) The Hoppe–Pólya urn model was meant as a model for
neutral evolution, where there are a vast number of potential mutations which convey no
selective advantage. (The same urn model has an alternative life in the Bayesian theory of
induction, having essentially been invented in 1838 by the logician Augustus de Morgan to
deal with the prediction of the emergence of novel categories. It generalizes Bayes–Laplace
rules of succession, known to philosophers as Carnap’s continuum of inductive methods
[20, 21].)

It is evident that the Hoppe–Pólya urn process and the Chinese Restaurant process are
essentially the same process described in two different ways. Hoppe’s colors correspond to
the tables in the Chinese Restaurant; the mutator ball to the phantom guest. After a finite
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number of iterations N , the N guests in the restaurant or the N balls in Hoppe’s urn (other
than the phantom guest or the black ball) are partitioned into some number of categories.
The categories are colors for the urn, tables for the restaurant. But the partitions we end up
with can differ each time; they depend on the luck of the draw. We have random partitions
of the guests or balls, each time having a different number of categories, different numbers
of individuals in each category, and different individuals filling out the numbers.

The possible patterns that can arise after n guests are seated are described by the partition
vector 〈a1, . . . , an〉 where aj denotes the number of tables with j guests. For example, if
there are four guests sitting at two tables, the pattern of one table with one guest and one
table with three guests means that a1 = 1 (the one table with one guest), a2 = 0 (there are
no tables with two guests), a3 = 1 (the one table with three guests), and a4 = 0 (there are no
tables with four guests); this corresponds to the partition vector 〈1,0,1,0〉.

Note that there are four ways of realizing this pattern and that all four are equally likely.
If the two tables are labeled A and B, and the four guests arriving in order are labeled 1, 2,
3, 4, then the four patterns and their probabilities are (the first guest always sits at the first
table):

Table A Table B Probability
1, 2, 3 4 1 × 1/2 × 2/3 × 1/4 = 1/12
1, 2, 4 3 1 × 1/2 × 1/3 × 2/4 = 1/12
1, 3, 4 2 1 × 1/2 × 1/3 × 2/4 = 1/12
1 2, 3, 4 1 × 1/2 × 1/3 × 2/4 = 1/12

It is in fact generally true of the process that all realizations of a given partition vector
are equally likely to occur. All that affects the probability is a specification of the number of
tables that have a given number of guests. The fact that any arrangement of guests with the
same partition vector has the same probability is called partition exchangeability, and it is
the key to mathematical analysis of the process.

There are explicit formulas to calculate probabilities and expectations of classes of out-
comes after a finite number of iterations. The expected number of categories—of colors of
ball in Hoppe’s urn or the expected number of tables in the Chinese restaurant—will be of
particular interest to us, because the number of colors in a sender’s urn will correspond to
number of signals in use. This is given by a very simple formula: after N iterations, the ex-
pected number is

∑
(i=1 to N) 1/i, the N th partial sum of the harmonic series, which grows

logarithmically in N . Results are plotted in Fig. 1.

Fig. 1 Expected number of
categories
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Fig. 2 Probability of partitions
of 10 into two categories

Although it is known that with probability one the limiting number of categories is infi-
nite, for even quite large numbers of iterations the expected number of categories is relatively
modest.

There is something else that we would like to emphasize. For a given number of cate-
gories, the distribution among those categories is not uniform. We can illustrate this with a
simple example. Suppose we have ten iterations and the number of categories turns out to
be two (two colors of ball, two tables in the restaurant), something that happens about 28%
of the time. This can be realized in five different ways as a partition of 10: 5 + 5, 4 + 6,
3 + 7, 2 + 8, 1 + 9. (These correspond to the partition vectors: a5 = 2 and aj = 0 other-
wise, a4 = a6 = 1 and aj = 0 otherwise, a3 = a7 = 1 and aj = 0 otherwise, a2 = a8 = 1 and
aj = 0 otherwise, and a1 = a9 = 1 and aj = 0 otherwise, respectively.) There is a simple
way of calculating the probability of each—the Ewens sampling formula—which gives the
probability of a partition vector for n draws:

Pr〈a1, . . . , an〉 =
∏

j=1 to n

1/
[(

jaj
)
(aj !)

]

The results in the case of our example are graphed in Fig. 2.
The more unequal a division is between the categories, the more likely it is to occur.

Some colors are numerous, some are rare. Some tables are much fuller than others. This can
be seen as the result of a kind of preferential attachment process. In the Chinese restaurant,
fuller tables are more likely to attract new guests. This generates a power-law distribution,
similar to those that are ubiquitous in word frequencies in natural language and elsewhere
[22].

3 Reinforcement with Invention

We remarked that the Pólya urn process can be thought of as reinforcement learning when
there is no distinction worth learning—all choices (colors) are reinforced equally. The
Hoppe–Pólya urn, then, is a model which adds useless invention to useless learning. That
was its original motivation, where different alleles confer no selective advantage.

If we modify the Pólya urn by adding differential reinforcement—where choices are rein-
forced according to different payoffs—we get the basic Roth–Erev model of reinforcement
learning, used by Argiento et al. If we modify the Hoppe–Pólya model by adding differ-
ential reinforcement, then—as discussed below—we get reinforcement learning capable of
invention.
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4 Inventing New Signals

We use the Hoppe–Pólya urn as a basis for a model of inventing new signals in signaling
games. For each state of the world, the sender has an additional choice: send a new signal.
A new signal is always available. The sender can either send one of the existing signals
or send a new one. Receivers always pay attention to a new signal. (A new signal means
new signal that is noticed, failures being taken account of by making the probability of a
successful new signal smaller than one.) Receivers, when confronted with a new signal, just
act at random. We equip them with equal initial propensities for the acts.

Now we specify how learning proceeds. Nature chooses a state and the sender either
chooses a new signal, or one of the old signals. If there is no new signal the model works
just as with basic Roth–Erev reinforcement. If a new signal is introduced, it either leads to
a successful action or not. When there is no success, the system returns to the state it was in
before the experiment with a new signal was tried.

But if the new signal leads to a successful action, both sender and receiver are reinforced.
The reinforcement now consists of the sender’s increased propensity to send the signal in
the state in which it was just sent, and the receiver keeping track of the successful acts when
receiving the new signal. In terms of the urn model, in the case of a successful act, the
receiver activates an urn for the signal, with one ball for each act, and a second ball for the
successful act. The sender now considers the new signal not only in the state in which it was
tried out, but also considers it a possibility in other states. So, in terms of the urn model, a
ball for the new signal is added to each sender’s urn, as well as a reinforcement ball added
to the urn for the state that just occurred. The new signal has now established itself. We have
moved from a Lewis signaling game with N signals to one with N + 1 signals. See Fig. 3.

In summary, one of three things can happen:

Fig. 3 R denotes a red ball, G—green, B—black, Y—yellow. In State 2 a black ball is drawn, act 2 is tried
and is successful. A yellow ball is added to both sender’s urns and a reinforcement yellow ball is added to the
urn for state 2. The receiver adds an urn for the signal yellow, and adds an extra ball to that urn for act 2
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1. No new signal tried, and the game is unchanged. Reinforcement proceeds as in a game
with a fixed number of signals.

2. A new signal is tried but without success, and the game is unchanged.
3. A new signal is tried with success, and the game changes from one with n states, m

signals and p acts to one with n states, m + 1 signals, p acts.

5 Starting with Nothing

If we can invent new signals, we can start with no signals at all, and see how the process
evolves. We can expect that—like the simple Hoppe–Pólya urn—the limiting number of
different signals will be infinite. The appendix gives a proof for the case of m states having
unequal probability and n acts. Starting with no signals, the limiting number of different
types of signals is almost surely infinite, and each signal is almost surely sent an infinite
number of times.

But if we run a large finite number of iterations, we do not expect a comparably large
number of signals. For learning with invention, we do not have anything like the stochastic
approximation theory analysis of Argiento et al. to prove this rigorously, and such an anal-
ysis looks very hard to come by. We therefore proceed with a preliminary investigation by
simulation.

Consider the 3 state, 3 act Lewis signaling game with states equally probable. As before,
we have strong common interest—exactly one act is right for each state. In simulations of
our model of invention, starting with no signals at all, the number of signals after 100,000
iterations ranged from 5 to 25. A histogram of the final number of signals in 1,000 trials is
shown in Fig. 4. This behavior is close to that which would be expected from a pure Chinese
Restaurant process.

Fig. 4 Number of signals after 100,000 iterations of reinforcement with invention. Frequency in 1000 trials
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6 Avoiding Pooling Traps

In a version of this game with the number of signals fixed at 3, reinforcement learning some-
times falls into a partial pooling equilibrium. In simulations of basic Roth–Erev reinforce-
ment learning with initial propensities of 1, 9.6% of the trials led to imperfect information
transmission [[3], 1000 trials, 1,000,000 iterations of learning per trial]. In these cases the
average payoff approaches 2/3 and the players appear to approach a partial pooling equilib-
rium. (In the remaining trials the average payoff was close to 1.) Using reinforcement with
invention, starting with no signals, 1,000 trials all ended up with efficient signaling (using a
success rate of at least 99% after one million trials as a proxy for efficient signaling). Sig-
nalers went beyond inventing the three requisite signals. Lots of synonyms were created. By
inventing more signals, they avoided the traps of partial pooling equilibria.

In the game with 2 states, 2 acts, and the number of signals fixed at 2, if the states had
unequal probabilities agents sometimes fell into a complete pooling equilibrium—in which
no information at all is transmitted and the average payoff is 1/2. In such an equilibrium the
receiver would simply do the act suited for the most probable state and ignore the signal,
and the sender would send signals with probabilities that were insensitive to the state.

The probability of falling into complete pooling increased as the disparity in probabili-
ties became greater. Our simulations of basic Roth–Erev reinforcement learning, 1,000 tri-
als, 100,000 iteration of learning per trial, give us the following picture. When one state
has probability 0.6, failure of information transfer hardly ever happens. At probability 0.7 it
happens 5% of the time. This number rises to 22% for probability 0.8, and 38% for proba-
bility 0.9. Highly unequal state probabilities appear to be a major obstacle to the evolution
of efficient signaling.

If we take an extreme case in which one state has probability 0.9, start with no signals
at all, and let the players invent signals as above, then they reliably learn to signal. In 1000
trials they never fell into a pooling trap; they always learned a signaling system (again using
a success rate of at least 99% after one million trials as a proxy for efficient signaling). The
invention of new signals makes efficient signaling a much more robust phenomenon.

7 Causes of Efficiency

The ability to avoid partial pooling traps and evolve efficient signaling might be due to two
different mechanisms, alone or in combination. It might be the case that an excess of signals
might, by itself, make partial pooling much less likely. If this is the case, then starting with a
fixed number of signals larger than the number of states (invention disabled) would make it
less likely that individuals would get near partial pooling. Or individuals falling into a partial
pooling equilibrium might be able to invent themselves out of it. If this were the case, then
we should find that if we start the process with invention near partial pooling, new signals
enable the evolution to efficient signaling. In fact, both mechanisms can operate.

Consider the case of two states, signals and acts, in which state 1 has probability 0.9,
and state 2 probability 0.1. We will initialize the system near a pooling equilibrium, and
run learning with invention. The degree of entrenchment of the pooling equilibrium can be
varied by changing the initial weights: with more balls in the sender’s and receiver’s urn, it
becomes more difficult to wander away from pooling.

We start the sender with (1/2n) + 1 balls for signal 1 and (1/2n) + 1 balls for signal 2
in the urn for each state; the receiver with n + 1 balls for act 1 and 1 ball for act 2 in her urn
for each signal. The higher the entrenchment parameter, n, the more difficult it is for a new
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Table 1 The effect of extra
signals on efficient signaling Number of initial signals % of pooling % of signaling

2 38.1 61.9
3 12.0 88.0
4 4.5 95.5
5 1.7 98.3
6 0.5 99.5
7 0.5 99.5
8 0.2 99.8
9 0 100.0

signal to become established. For n = 10, 100, 1,000, 10,000 learning with invention always
converged to a signaling system equilibrium (1,000 trials, 1,000,000 iterations per trial). For
comparison, with no invention learning always converged to the pooling equilibrium with
n > 100. (The results were similar if the system was initialized near the pooling equilibrium
where signal 1 was always sent.)

Even in simulations with 1,000,000 learning steps, invention produces only a modest
number of signals. So we might just start the process with extra signals already there. We
now keep the initial weights as in the original setup and vary the initial number of signals.
Extra signals promote learning to signal efficiently, as shown in Table 1.

It appears that both (i) excess initial signals make it less likely to fall into a pooling
equilibrium and (ii) invention of new signals allows escape from the vicinity of a pooling
equilibrium.

8 Synonyms

Let us return to signaling with invention. Typically we get efficient signaling with lots of
synonyms. How much work are the synonyms doing? Consider the following simulation
of 3 × 3 × 3 signaling, starting with no signals and proceeding with 100,000 iterations of
learning with invention (see Table 2).

Notice that a few of the signals (shown in boldface) are doing most of the work. In state 1,
signal 5 is sent 87% of the time. Signals 1 and 2 function as significant synonyms for state 2,

Table 2 In invention, only a few
synonyms are used to achieve
efficiency

Signal 1 Probabilities in states 0, 1, 2 0.000, 0.716, 0.000

Signal 2 Probabilities in states 0, 1, 2 0.000, 0.281, 0.000

Signal 3 Probabilities in states 0, 1, 2 0.096, 0.000, 0.001

Signal 4 Probabilities in states 0, 1, 2 0.009, 0.000, 0.000

Signal 5 Probabilities in states 0, 1, 2 0.868, 0.000, 0.000

Signal 6 Probabilities in states 0, 1, 2 0.000, 0.000, 0.810
Signal 7 Probabilities in states 0, 1, 2 0.024, 0.000, 0.000

Signal 8 Probabilities in states 0, 1, 2 0.000, 0.000, 0.143
Signal 9 Probabilities in states 0, 1, 2 0.000, 0.000, 0.044

Signal 10 Probabilities in states 0, 1, 2 0.000, 0.000, 0.000

Signal 11 Probabilities in states 0, 1, 2 0.000, 0.000, 0.000

Signal 12 Probabilities in states 0, 1, 2 0.001, 0.000, 0.000

Signal 13 Probabilities in states 0, 1, 2 0.000, 0.000, 0.000
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being sent more that 99.5% of the time. Signals 6 and 8 are the major synonyms for state 3.
(All of these signals are highly reinforced on the receiver side.) The pattern is fairly typical
(in 1000 trials). Very often, many of the signals that have been invented end up little used.

This is just what we should expect from what we know about the Hoppe–Pólya urn. Even
without any selective advantage, the distribution of reinforcements among categories tends
to highly unequal, as was illustrated in Fig. 2. Might not infrequently used signals simply
fall out of use entirely? Simulations that suggest they do not fade away, but at present we do
not have an analytic proof.

9 Noisy Forgetting

Nature forgets things by having individuals die. Some strategies (phenotypes) simply go
extinct. This cannot really happen in the replicator dynamics—an idealization where un-
successful types get increasingly rare but never actually vanish. And it cannot happen in
Roth–Erev reinforcement where unsuccessful acts are dealt with in much the same way.

Evolution in a finite population is different. In the models of Sebastian Shreiber [16],
a finite population of different phenotypes is modeled as an urn of balls of different colors.
Successful reproduction of a phenotype corresponds to addition of balls of the same color.
So far this is identical to the basic model of reinforcement learning. But in Schreiber’s
models individuals also die. We transpose this idea to learning dynamics to get a model of
reinforcement learning with noisy forgetting.

For individual learning, this model may be more realistic than the usual model of ge-
ometrical discounting. (Geometrical discounting was by Roth and Erev as a modification
of the basic model to incorporate forgetting or “recency” effects.) That model may be best
suited for aggregate learning, where individual fluctuations are averaged out. But individual
learning is noisy, and it is worth looking at an urn model of individual reinforcement with
noisy forgetting.

10 Inventing and Forgetting Signals

We can put together these ideas to get learning with invention and with noisy forgetting, and
apply it to signaling. It is just like the model of inventing new signals except for the random
dying-out of old reinforcement, implemented by random removal of balls from the sender’s
urns.

The idea may be implemented in various ways. Here is one. With some probability, na-
ture picks an urn at random and removes a colored ball at random. (The probability is the
forgetting rate, and we can vary it to see what happens.) Call this Forgetting A. Here is an-
other. Nature picks an urn at random, picks a color represented in that urn at random, and
removes a ball of that color. Call this Forgetting B.

Now it is possible that the number of balls of one color, or even balls of all colors could
hit zero in a sender’s urn. Should we allow this to happen, as long as the color (the signal)
is represented in other urns for other states? Here is another choice to be made. But in the
simulations we are about to report, we never hit a zero.

We simulated invention with No Forgetting, Forgetting A, Forgetting B, starting with
no signals, for the number of states (= acts) being 3, 4, 5. States are equiprobable and the
forgetting rate is 0.3 for all simulations. A run consists of 1,000,000 iterations of the learning
process, and each entry is the average of 1,000 runs. The results are shown in Table 3.
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Table 3 Using forgetting to
prune unneeded signals Average number of signals remaining

No Forgetting Forgetting A Forgetting B

3 states 16.276 19.879 3.016

4 states 17.491 21.079 4.005

5 states 18.752 22.686 4.982

6 states 20.097 24.069 5.975

7 states 21.336 25.82 6.96

8 states 22.661 27.14 7.941

9 states 23.815 28.684 8.929

10 states 24.925 30.663 9.928

Relative to No Forgetting, Forgetting B is highly effective in pruning unused signals.
(However, as noted before, even with no forgetting the number of excess signals after a mil-
lion trials is not that large.) In contrast, Forgetting A does not help at all and even appears
to be detrimental. This difference is real: even after a run of only 1,000 iterations of the
learning process and 100 runs for both No Forgetting and Forgetting A, the difference in the
average of the number of signals (10.90 − 9.18 = 1.72) is highly statistically significant.
(Using the Welch—that is, unpooled—test, t = 4.4579 on 197 degrees of freedom, with a
p-value of 1.388 × 10−5; the corresponding 95% confidence interval for the difference is
0.96 to 2.48. The difference remains highly significant even using a nonparametric proce-
dure: the Wilcoxon rank sum test gives an even smaller p-value of 5.061 × 10−6.)

Why is there a difference between No Forgetting and Forgetting A? A plot of the average
number of signals for the two cases as one goes from 1 to 1,000 iterations, as shown in
Fig. 5, is suggestive.

Fig. 5 No Forgetting vs. Forgetting A, 100 runs of 1,000 generations, states equiprobable
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Fig. 6 No Forgetting vs. Forgetting A, 100 runs of 1,000 generations. Initial state probabilities selected at
random from a uniform distribution over the simplex. The same initial conditions were used for the nth run
of each type of forgetting

This behavior does not appear to depend on any special properties of the equiprobable
state case just discussed: if one does 1,000 iterations of No Forgetting and Forgetting A for
100 randomly chosen state probabilities instead, a similar graph arises, as shown in Fig. 6.

We hypothesize that one important reason for why No Forgetting does as well as it does
is that it is relatively easy for a successful signal to lock in, and the number of the colored
balls that represent it to grow fast. With forgetting A, the more balls there are of a given
color, the more likely it is that one of that color will be thrown away. This tends to prevent
lock-in, make reinforcement of a successful color less likely, and hence increase the variety
of colored balls in the urn.

11 Related Work: Infinite Numbers of States or Acts

Bhaskar [4] analyzes an evolutionary model with an infinite number of signals. There is
noisy, cost-free pre-play communication added to a base game. Because of the infinite num-
ber of signals, there must be signals with arbitrarily low probability of use. Then, because of
special properties of the model, there are always signals that are as good as new in function-
ing as a “secret handshake” [14]. The “secret handshake” destabilizes inefficient equilibria.
This suggests investigation of learning with inventing new signals in the setting of cost-free
pre-play communication.

Worden and Levin [19] analyze a model in which there are an infinite number of potential
acts. Trying an unused act changes the game. It is assumed that players can only try an
unused act that is “close” to a used act in that its payoff consequences are epsilon-close to
those of one of the old acts. The game can then change slowly so that a Prisoner’s Dilemma
can evolve into a non-dilemma. Formally, we could extend our model to include inventing
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new acts by giving the receiver a Hoppe–Pólya urn. The question is how to extend the payoff
matrix. Worden and Levin supply one sort of answer. Others might be of interest, depending
on the context of application.

12 Conclusion

We move from signaling games with a closed set of signals to more realistic models in
which the number of signals can change. New signals can be invented, so the number of
signals can grow. Little used signals may be forgotten, so the number of signals can shrink.
A full dynamical analysis of these models is not available, but simulations suggest that these
open models are more conducive to the evolution of efficient signaling than previous closed
models.

Appendix: Infinite Number of Signals

This appendix recapitulates some definitions in more mathematical form, and provides
proofs of some statements.

A.1 Signaling Equilibria

Suppose there are s states, s acts, and t signals. A sender strategy is an s × t stochastic
matrix A = (aij ); aij is the probability that the sender sends signal j given state i. A receiver
strategy is a t × s stochastic matrix B = (bjk); bjk is the probability that the receiver chooses
act k given he receives signal j . In this case the pair of strategies (A,B) is said to be a
signaling system. Note that the matrix product C = AB is an s × s stochastic matrix; if
C = (cik), then cik is the probability that the receiver chooses act k given state i.

If πi is the probability that nature chooses state i, then
∑

i πicii is the probability that
a correct state-act pairing occurs. This is the same as the expected payoff for the signaling
system (given the assumed payoff structure). By an equilibrium we mean a Nash equilib-
rium: i.e., neither the sender nor the receiver can increase the common expected payoff by
one changing their strategy while the other does not. A signaling system equilibrium is a
pair of strategies (A,B) such that C = I , the identity matrix. In this case t ≥ s (there must
be at least as many signals as states), and if aij > 0, then bji = 1.

A group of states is said to be pooled in a sender strategy if for every signal the proba-
bility of that signal being sent is the same for every state in the group. A complete pooling
equilibrium, an equilibrium in which all the states are pooled; that is, it is a sender strat-
egy A all of whose rows are the same (the probability of sending of a particular signal is
independent of the state), and therefore the rows of C are also equal (the probability of
choosing of a particular act is also independent of the state). A partial pooling equilibrium
is an equilibrium in which some but not all of the states are pooled.

A.2 The Ewens Sampling Formula

The Chinese restaurant process/Hoppe–Pólya urn provides a stochastic mechanism for gen-
erating the class of random partitions described by the Ewens sampling formula. Given n

objects divided into t classes (each class containing at least one object), with ni in the ith
class, let aj ,1 ≤ j ≤ n, record the number of classes containing j objects (that is, aj is the
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number of ni = j ). Then 〈n1, . . . , nt 〉 is the vector of (class) frequencies and 〈a1, . . . , an〉 the
corresponding partition vector. Clearly one has

t∑

i=1

ni =
n∑

j=1

jaj = n,

n∑

j=1

aj = t

In the case of the Chinese restaurant process the number of classes present after n objects
are generated is itself random. In the most general case there is a free parameter θ , and if
Sn(θ) = θ(θ + 1)(θ + 2) · · · (θ + n − 1), then the probability of seeing a particular partition
vector 〈a1, . . . , an〉 is given by the Ewens formula

P
(
〈a1, . . . , an〉

)
= n!θ

∑n
j=1 aj

∏n
j=1 jaj aj !Sn(θ)

.

If θ = 1, then this reduces to the formula given earlier in this paper. If instead θ = 2, say,
then this would correspond to there being two black mutator balls (or phantom guests in the
CRP version), rather than just one; and similarly for θ any positive integer. (But the formula
makes sense for any positive value of θ , integral or not; this corresponds to giving the black
ball a relative weight of θ versus the unit weight given every colored ball.)

There is a rich body of theory that has arisen over the last four decades concerning the
properties of random partitions whose stochastic structure is described by the Ewens for-
mula.

If Tn denotes the (random) number of different types or colors (other than black) in the
urn after n draws, then one can show that its expected value is

E[Tn] = θ

(
1
θ

+ 1
θ + 1

+ · · · + 1
θ + n − 1

)
.

If θ = 1, this reduces to the nth partial sum of the harmonic series,

n∑

k=1

1
k

= lnn + γ + εn;

here γ = 0.57721 . . . is Euler’s constant, εn ∼ 1/2n (that is, limn→∞ 2nεn = 1).

A.3 Two Limit Theorems

In the following we derive some of the properties of the signaling with invention process
described in the section on inventing new signals.

A.3.1 The Number of Different Colors Diverges

First some notation. Let Fn be the history of the process up to time n (the nth trial). Let An

denote the event that on the nth trial a new signal is tried with success. Let ω denote the
entire infinite history of a specific realization of our reinforcement process. (So if, instead,
one were considering the process of tossing a coin an infinite number of times, ω would
represent a specific infinite sequence of heads and tails.) Let

P (An | Fn−1)
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denote the conditional probability that An occurs, given the past history of the process up to
time n−1. This is not a number, but a random quantity, since it depends on the realization ω,
which is random. Finally, let

P (An | Fn−1)(ω)

denote this conditional probability for a specific history or realization ω; this is a number.
By the martingale generalization of the second Borel–Cantelli lemma (see, e.g.,

[6, p. 249]), one has

{An i.o.} =
{ ∞∑

n=1

P (An | Fn−1) = ∞
}

almost surely.

That is, consider the following two events. The first is

{ω : ω ∈ An infinitely often};

the second event is
{

ω :
∞∑

n=1

P (An | Fn−1)(ω) = ∞
}

.

The assertion is that the two events are the same, up to a set of probability zero.
We claim that An occurs infinitely often with probability one; that is, P ({An i.o.}) = 1.

By the version of the Borel–Cantelli lemma just cited, it suffices to show that

P

({

ω :
∞∑

n=1

P (An | Fn−1)(ω) = ∞
})

= 1.

In fact we show more: that
∞∑

n=1

P (An | Fn−1)(ω) = ∞

for every history ω.
To see this, suppose that there are k states, and that the sender selects these with proba-

bilities pj , 1 ≤ j ≤ k. Suppose that initially there is just one ball, the black ball, in each of
the k urns. Then at each stage there are aj ≥ 1 balls in each urn, one black and the remaining
aj − 1 some variety of colors. The probability that at stage n a new signal is generated and
successfully used depends on the values of a1, . . . , ak at the start of stage n (that is, before
selection takes place), and is

k∑

j=1

pj

(
1
aj

)(
1
k

)
.

(That is, you pick the j th urn with probability pj , you pick the one ball out of the aj that is
black, and there is a one chance in k that the receiver chooses the correct act.)

Now use the generalized harmonic mean–arithmetic mean inequality (see, e.g., [8]); this
tells us that for aj > 0, one has

1
∑k

j=1(
pj

aj
)

≤
k∑

j=1

pjaj .
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Further, the total number of balls in the state urns, a1 + · · · + ak , is greatest when a black
ball has been selected every time and the receiver chooses the right act (since then one adds
k + 1 balls of a new color at each stage rather than just one). Thus at the start of stage n one
has

a1 + · · · + ak ≤ (k + 1)(n − 1) + k

Thus if p& = max{pj ,1 ≤ j ≤ k}, it is apparent that

k∑

j=1

pjaj ≤ p&(a1 + · · · + ak) ≤ p&
[
(k + 1)n − 1

]
.

Putting this all together gives us that the probability that at stage n a new signal is gener-
ated and successfully used is

1
k

k∑

j=1

(
pj

aj

)
≥ 1

kp&

1
(k + 1)n − 1

.

It follows that

∞∑

n=1

P (An | Fn−1)(ω) ≥ 1
kp&

∞∑

n=1

1
(k + 1)n − 1

>
1

k(k + 1)p&

∞∑

n=1

1
n

= ∞,

using the well-known fact that the harmonic series diverges.

A.3.2 The Number of Balls of a Given Color Diverges

Suppose a color has been established. The above proof can be easily modified to show that
the number of balls of a given color in all the state urns, say green, tends to infinity almost
surely as n tends to infinity. Let An now denote the event that on the nth trial green is
selected and reinforced; and p& = min{pj ,1 ≤ j ≤ k} > 0. Then in the receiver’s green urn
there must be at least one state that is represented at least 1/k of the time (since there are k

states and the sum of the fractions must sum to one). Let aj& denote the index of this state.
(Note this state can vary with n.) Then one has

P (An | Fn−1) ≥ p&

1
aj&

(
1
k

)
≥ p&

k[(k + 1)n − 1] ,

and this again diverges. (This bound is obviously quite crude.)
It follows as a simple corollary that the signal corresponding to a given color is necessar-

ily sent (almost surely) an infinite number of times (even though each time the signal is sent
its color may or may not be reinforced).
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