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Abstract

Sender-receiver games, first introduced by David Lewis in Convention,
have received increased attention in recent years as a formal model for the
emergence of communication. Skyrms (2010) showed that simple models
of reinforcement learning often succeed in forming efficient, albeit not
necessarily minimal, signalling systems for a large family of games. Later,
Alexander et al. (2011) showed that reinforcement learning, combined
with forgetting, frequently produced both efficient and minimal signalling
systems. In this paper I define a dynamic sender-receiver game in which the
state-action pairs are not held constant over time, and show that neither of
these two models of learning learn to signal in this environment. However,
a model of reinforcement learning with discounting of the past does learn
to signal; it also gives rise to the phenomenon of linguistic drift.

1. Introduction.

The shadow of David Lewis’s book Convention looms large over both game
theory and philosophy. In addition to offering the first explicit definition of
common knowledge, Lewis sought to refute Quine’s claim that meaning could
not arise solely via convention. In doing so, he provided the first formulation of
what has come to be known as the family of sender-receiver games.

The simplest form of the sender-receiver game, shown in figure 1, consists of
two players: the Sender and the Receiver, with a minor role played by Nature in
determining the outcome of a chance event. Nature selects a state of the world,
which the Sender observes without error. The Sender then transmits an arbitrary
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signal to the Receiver, who observes the signal without error. The Receiver then
selects an action to perform. If the action performed is the “correct” action for
the state of the world, both the Sender and the Receiver get a positive payoff;
otherwise, each receives nothing. Numerous interactions in the animal kingdom
exist which have a structure similar to this game (see ch. 2 of Skyrms, 2010).
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Figure 1: A simple sender-receiver game, in extensive form.

Despite Lewis’s brilliance, one aspect which he did not address in Convention,
much less solve, was just how a group of rational agents facing a collective action
problem described by a sender-receiver game might successfully bootstrap their
way to a solution. In short, Lewis did not consider the dynamics underlying
equilibrium selection for sender-receiver games. Thus the question arises: can
rational agents to coordinate on an efficient signalling equilibrium in sender-
receiver games and, if so, how?

The question has been asked before. Brian Skyrms, in particular, broached it
in the final chapter of Evolution of the Social Contract, and revisited it in Signals:
Evolution, Learning & Information. The greatest difference between the two
treatments involves a move away from use of the replicator dynamics as the
underlying dynamical model to one based on stochastic reinforcement learning.
One motivation for doing so derives from a critical shortcoming in attempting
to use the replicator dynamics1 to explain the emergence of signalling systems
in sender-receiver games. Namely, the moment we consider signalling games of
any complexity greater than the most elementary case, whether or not signalling

1By which I mean both the standard replicator dynamics (Taylor and Jonker, 1978) as well as
the replicator-mutator dynamics (Hadeler, 1981; Hofbauer, 1985).
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systems evolve turns out to depend, often critically, upon the initial state of the
population.

More precisely: let a (N ,K , M ) sender-receiver game be one with N states of
the world, K possible signals, and M possible actions. If N ≤ K , then there are
enough signals present for the Sender and Receiver to communicate efficiently,
provided they agree on the interpretation. Let us call such an interpretation a
signalling system.

The simplest interesting sender-receiver game involves two states, two signals,
and two actions. Here, if states of the world are equally likely, then under the
replicator dynamics a signalling system evolves almost always.2 If the two states
of the world are not equally likely, then whether a signalling system evolves under
the replicator dynamics depends upon just how unequal the state probabilities
are (Skyrms, 2010, pp. 64–65). Things appear to improve slightly if we consider
the replicator-mutator dynamics, for Hofbauer and Huttegger (2008) show that if
the state probabilities are not too unequal, then the replicator-mutator dynamics
will once again almost always converge to a signalling system. Yet if the number
of states, signals, and actions are all greater than two, the story changes again! In
these cases, it is possible for the replicator dynamics to converge to a suboptimal
outcome where the same signal is used clumsily for more than one state.3 Whether
a signalling system evolves thus depends upon accidental features such as where
the system starts.

Ideally, what one would like is a model which shows the following, for all
reasonable sender-receiver games. First, how individuals can coordinate upon an
efficient signalling system, avoiding the partial pooling traps which plague the
replicator dynamics. Second, how individuals can coordinate upon a minimal
signalling system, one using the least number of signals needed. Third, we would
like the model to show that signalling systems can be created out of nothing, for
it seems ad hoc to suppose a pre-existing set of possible signals, to say nothing
about imposing a limit on the total number of possible signals.

One advantage of reinforcement learning, which Skyrms shows, is that both
the first and third points can be achieved:

“Using reinforcement learning with invention, starting with no sig-
nals, 1,000 trials all ended up with efficient signaling. Signalers went
beyond inventing the [requisite number of] signals. Lots of syn-
onyms were created. By inventing more signals, the avoided the traps

2See Skyrms (1996, pg. 93). Although it is not true, in general, that “the emergence of meaning
is a moral certainty,” it is true in this special case.

3These are the so-called “partial pooling” equilibria. In a (3,3,3) sender-receiver game, one
example would be where signals 1 and 2 are both used for state 1, and signal 3 is used for both
states 2 and 3.
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of partial pooling equilibria.” (Skyrms, 2010, pg. 131)

In the above, Skyrms refers to a two-state, two-action sender-receiver game,
although the point holds more generally.

In a later paper, Alexander, Skyrms, and Zabell (2011) augmented Skyrms’
original model of signal invention with a model of signal destruction, or “for-
getting”. One particular model4 of signal invention and forgetting, according
to simulation results, yields both efficient and minimal signalling systems quite
often.5 Hence it appears that all three above desiderata are readily satisfiable.

Or so it appears. One should note that most of the work done on sender-
receiver games, from Lewis to Skyrms, assumes a static environment for the
signalling game.6 The correct pairing between states and acts does not change
with time. Yet the real world is not static: seasons change, predators learn, and
with that the correct act, given the state of the world, may change to something
different than what it was before.7 If we consider sender-receiver games within a
dynamic world, where there is not always a constant, correct response to the state
of the world, how well does Skyrms’s reinforcement model of signal invention
cope?

The answer, I shall argue, is that the model does not cope very well at all; nor,
for that matter, does the augmented model of inventing and forgetting signals
due to Alexander et al. (2011). What does prove to be particularly effective at
adjusting to a dynamic environment is a well-known aspect of human psychology:
discounting the past. In what follows, I shall show that discounting the past
provides a good solution to the problem of learning to signal in a dynamic
world. In addition, it will, somewhat surprisingly, turn out to provide a model
of linguistic drift between signalling systems — largely without sacrificing signal
efficiency.

4The model of signal invention and forgetting is a varient Roth-Erev reinforcement learning.
It is equivalent to a Hoppe-Pólya urn where balls are discarded by uniform selection by type.
Further discussion appears in section 2.

5I should note that, if one changes the learning rule, it is possible to do even better. Zollman
has shown that if one combines best-response with random experimentation upon failure, then it
is always possible to learn to signal. However, if errors are permitted, then best-response needs
to changed to best-response with inertia, where the introduction of inertia compensates for the
occasional error. In this case, we always arrive at an efficient signalling system. The downside of
this learning rule is that it requires knowledge of the set of possible payoffs.

6One notable exception is Barrett (2009), who considers the effect of modifying the reinforce-
ment function used in the learning process.

7One might object that this problem only arises because one has failed to adopt a sufficiently
fine-grained partition for distinguishing between states of the world. The difficulty is that the
set of possible partitions ranges from the maximally inclusive (“everything”) to the maximally
individuated (where each referent of “this” falls in its own cell). How should one choose a
partition? Barrett (2007) analyses this question and shows that the choice of partition is frequently
underdetermined.
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2. Dynamic signalling games with reinforcement learning

Urn models have long been used to study reinforcement learning. In their
recent paper, Alexander et al. (2011) use Hoppe-Pólya urns to model a process
of reinforcement learning with signal invention and forgetting. Suppose that
the Sender and Receiver play a repeated N -state, N -action signalling game. The
Sender begins with N urns, one for each state of the world, with each urn
containing a single black ball (known as the mutator). The Receiver, on the other
hand, begins with nothing.

When the Sender sees the state of the world, he reaches into the appropriate
urn and draws a ball. If the mutator is drawn (which always happens in the
first round of play), the Sender chooses a new colour not represented in the urn
and sends that as a signal to the Receiver. Upon receipt of this new signal, the
Receiver creates a Pólya urn with N differently coloured balls — one ball for
each possible action. The Receiver draws a ball8 at random and then performs
that action. If the action was the correct response for the state of the world, the
Receiver reinforces by adding another ball of the same colour to the urn, and
labels that urn with the colour of the signal it responded to. (The idea being that
the Receiver always uses the same urn when responding to a signal.) The Sender,
likewise, retains the new coloured ball and reinforces by adding an additional ball
of that colour to the urn from which it was drawn. Since a new signal has been
created, the Sender adds one ball of the new colour to each of the other urns,
since it is possible to send the new signal in those states of the world, too. If the
action was incorrect, the Receiver discards the newly-created urn, and the Sender
discards the new coloured ball.

Figure 2 illustrates this process for a 3-state, 3-action signalling game. In 2(a),
we see the beginning configuration where the Sender has three urns, one for each
state of the world, each urn containing the black ball. Edges connect the Sender
node to urn nodes, where the edge is labelled according to the state of the world.
(Note that we index states of the world starting at 0.) Edges leading from an
urn node to terminal nodes represent the colours present in the urn; the colour
is indicated on the edge, with ‘0’ denoting the mutator. The number of balls
in the urn of a colour is listed at the terminal node. Figure 2(b) illustrates the
outcome after a successful signalling attempt: in state of the world 1, the Sender
tried a new signal, to which the Receiver responded successfully. The usefulness
of this representation can be seen in figure 3, which illustrates the complete urn
configuration for both the Sender and Receiver after 1,000 iterations.9

8All sampling is done with replacement.
9A minor technical point: earlier, I said that after a failed signalling attempt with a new signal,

the Sender discards that colour and the Receiver discards the newly created urn. One might
wonder, then, why all of the colours in figure 3 increment perfectly from 1 to 11? Shouldn’t there
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(a) The beginning configuration: the Sender has three
urns, each containing a single black ball (indexed by ‘0’).
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(b) The configuration resulting from a successful signalling attempt: in state
1, the Sender sent signal 1, to which the Receiver responded correctly. The
Receiver keeps her new urn, reinforces, and the Sender reinforces and adds the
new signal to the other two urns.

Figure 2: The first correct signalling attempt.
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Figure 3: Urn configuration after 1,000 iterations (signal invention only).

In figure 3, we see many more signals being used than are necessary. Suppose
that, from time to time, the Sender selects an urn at random, then selects a colour
found in that urn at random, and then discards a ball of that colour from that
urn. This method proves highly effective at reducing the number of synonyms
used, as figure 4 illustrates. (For more details, see Alexander et al. 2011.)

Let us now turn to the question of how well this coordination technique
copes with dynamic environments. Suppose we have a sender-receiver game
consisting of N states {s1, . . . , sN} and N actions {a1, . . . ,aN}. For convenience,
initially assume that the correct response to state si is act ai . Two ways in which
the game can be modified to include a dynamic environment are as follows: either
a new state/action pair is introduced (representing an expansion of the signalling
problem), or the correct response to an existing state of the world is altered

be gaps in this sequence? Think of it in the following way: the Sender has a shelf containing
infinitely many coloured balls, each uniquely coloured. When the Sender ‘discards’ a coloured
ball after a failed signalling attempt, he merely returns it to the shelf. The next time the Sender
attempts to invent a new signal, he will use the same colour as before. But since the Receiver
discarded her urn for that colour after the previous failed attempt, this is equivalent to the Sender
attempting to signal with a novel colour. It proves useful to index signals in this way because,
when signals can be forgotten over time, we know that any gaps occuring are due to a previously
successful signal being (eventually) discarded.
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Figure 4: Urn configuration after 100,000 iterations, with both signal invention
and forgetting (forgetting rate of 0.333).

(representing a lateral shift in the environment).
When a new state sN+1, with corresponding act aN+1 is introduced, the Sender

finds himself in possession of a new urn, used when the Sender observes state
sN+1. That urn contains, in addition to the mutator, one ball for each of the other
signals in use. Likewise, a new ball representing the new available action aN+1 is
added to each of the Receiver’s response urns.

How does the addition of a new state/action pair affect the state probabilities?
Recall that Nature chooses a state at random according to some given probability
distribution Pr(·) over N states. In what follows, I assume the new probability
distribution Pr′(·) over N + 1 states to be defined as follows:

Pr ′(si ) =

(
N

N+1 Pr(si ) if i ≤N ,
1

N+1 otherwise.

This definition ensures that the new probability distribution Pr′(·) is equiprobable
if the original distribution Pr′(·) was.

Alternatively, the correct response to a given state of the world might change.
When this occurs, Nature selects, at random, two state-action pairs (si ,ai ) and
(s j ,a j ), permuting the correct response. After the swap, a j is the correct action
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Figure 5: The inability of reinforcement learning to cope with the addition of
new state-action pairs ( p denotes the probability of adding new states).

to take in state si and ai the correct response to take in state s j . Unlike the case
of adding new state-action pairs, this modification leaves the state probabilities
unchanged.

These dynamic modifications transform the problem of learning to signal.
Adding new state-action pairs ensures that the problem is of ever-growing com-
plexity. Although we have seen it is possible to generate efficient, minimal
signalling systems from nothing, one may wonder if that learning mechanism
works in an open-ended signalling problem. Furthermore, the forgetting rule
which prunes signals done to a minimal (or nearly minimal set) only needs to
eliminate rarely used signals. Adjusting to a dynamic environment where the
correct state-action pairs change requires the Sender and Receiver to unlearn, in a
timely fashion, past associations between state, signal and action.

2.1. Introducing new states

Figure 5 illustrates four typical outcomes for a simulation of Alexander et al.’s
model of inventing new signals when faced with the dynamic problem of coping
with new state-action pairs. As the probability p of adding new pairs increases,
the ability of the Sender and Receiver to coordinate on an efficient signalling
system decreases, in some cases greatly, over time. (The downward trend present
when p = 1× 10−5 cannot be seen at this scale.)

It is easy to prove that, in the limit, for any fixed forgetting rate r > 0, and any
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initial probability distribution, the cumulative frequency of successful signalling
attempts for the Sender and Receiver converges to zero. To see this, consider a
simpler learning problem than the one modelled: that when a new state-action
pair appears, the new urn the Sender gets only contains the mutator ball, rather
than one ball for each signal currently in use. Suppose that the N th state-action
pair has just been added, so that the probability that Nature presents this new
state to the Sender is 1

N . When the Sender observes that the state of the world
is sN , he will draw the mutator ball and send a new signal to the Receiver. The
Receiver, upon receipt, chooses an action at random, and the probability she
selects action aN , the correct response, is also 1

N . Since p, the rate at which
new state-action pairs are added, is fixed, as N gets sufficiently large eventually

1
N 2 � p, which means that new state-action pairs will almost certainly be added
before the Sender and Receiver manage to make any progress whatsoever on
figuring out the correct response to sN . Furthermore, suppose that the forgetting
rate is fixed at r . The probability that the Sender will attempt to discard a ball
from urn N is thus r

N . Since the model of forgetting used by Alexander et al.
(2011) first chooses a colour (other than black) before discarding a ball of that
colour, if N is sufficiently large, then 1

N 2 � r
N , which means that the approximate

rate of positive reinforcement for successful signalling in state N is much lower
than the rate of negative reinforcement. In short, not only are new states being
added before the Sender and a Receiver have a chance to solve the previously
existing signalling problem, the size of the signalling problem becomes so large
that, eventually, the Sender and Receiver forget their recently-discovered correct
responses faster than they play them (so as to obtain further reinforcement).
Hence, in the limit, the cumulative frequency of successful signalling converges
to zero.

It is no surprise that increasing the size of the learning problem by an arbitrary
extent eventually swamps the ability of the learning rule to cope with it. Even
best-response for all we know with inertia, the learning rule which “[learns] to
signal with probability one in all Lewis signaling games” (Skyrms, 2010, pg. 105),
cannot cope with the problem of a dynamic world in which states are added over
time. The reason is slightly different: best-response for all we know with inertia
does not include negative reinforcement, so once the Sender and Receiver manage
to signal successfully once, that convention will continue. (Even in the face of
occasional error, given the inertia.) Yet, as above, the time required for the Sender
and Receiver to coordinate on a signalling scheme for state sN grows as O

�
1

N 2

�
.

Eventually new states will be added faster than the Sender and Receiver can
augment their signalling scheme, and so the cumulative frequency of successfully
signalling attempts converges to zero. However, because best-response for all we
know with inertia will eventually establish a successful signalling scheme for all
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of the new states (it just takes longer and longer to do so), a curious corollary is
that, in the limit, the Sender and Receiver will learn to successfully signal for all
of the infinitely many states — even as the cumulative frequency of successful
signalling attempts converges to zero!10

2.2. Swapping state/action pairs

Now consider the alternate problem in which the correct response to a given
state of the world periodically changes, as when the seasons change or a predator
acquires a new mode of attack. Suppose that we have a 3-state, 3-action signalling
game with a forgetting rate of 0.333 (chosen because that rate frequently yields
efficient and minimal signalling systems), and a state swap probability of p = 1.0×
10−5. How well do reinforcement learners cope with this dynamic environment?

As figure 6 illustrates, reinforcement learners do not cope with state swaps
very well at all. (The alternating shaded regions identify periods where the
state-action pairs are held constant: a swapping of state-action pairs occurs at the
transitions.) Although reinforcement learners do very well at solving the initial
signalling problem, the fact that a Hoppe-Pólya urn does not place an upper limit
on the number of balls of a given colour means that the Sender and Receiver can
“lock in” to a given signalling system.11 This lock-in proves difficult to unlearn,
as the moving frequency in figure 6 shows. The moving frequency plots the
average rate of successful signalling attempts over the last 100 iterations. Initially,
the Sender and Receiver establish a signalling system for the original problem.
After the first swap occurs, the lock-in persists for over 75,000 iterations, with
successful signalling attempts occurring about a third of the time. Yet once the
Sender and Receiver coordinate on a signalling system for the new problem,
eventually another swap will occur, requiring that the process of unlearning
begin again.

Hence we see that, although the model of reinforcement learning of Alexander
et al. (2011) frequently achieves efficient, minimal signalling systems, the method
of reinforcement learning used has too slow of a response curve to cope effectively
with a changing environment. Although figure 6 only shows the outcome for a
3-state, 3-action signalling problem, it is clear that the problem exists for other
N -state, N -action signalling problems as well. Increasing the number of states
does reduce the extent to which lock-in occurs to a successful signal in a given urn,
but there is also a corresponding decrease in the frequency with which signals are
removed from urns. (In the case of equiprobable states, these exactly cancel each
other out.)

10This is, after all, just the Tristram Shandy paradox.
11See Barrett (2007); Barrett and Zollman (2009), though, who look at models of reinforcement

learning with a cap.
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Figure 6: The inability of reinforcement learners to adjust to a dynamic environ-
ment (3-states, 3-actions).

In contrast, best-response for all we know with inertia easily adjusts. Suppose
that a swap occurs in a signalling game having N states and N actions. The next
time the players encounter either swapped state, they will recognise that their
previously coordinate upon action is no longer the correct response. They then
will search through the space of possible actions at random until they happen
upon the correct response. (A precise calculation of the expected waiting time
until this happens can be found in appendix A.) Yet one worry is that even this
not particularly strategic form of best-response requires some knowledge of the
payoff matrix. Is there no learning rule in between the reinforcement learning
discussed by Skyrms (2010) and best-response which does the trick?

3. Discounting the past

In economics and finance, it is frequently assumed that rational agents trade
off present amounts against uncertain future gains by discounting the future.
Much debate exists over the exact form such temporal discounting takes12 but
that temporal discounting occurs is beyond question. Similarly, others (see
Charles Wolf, 1970; Caplin and Leahy, 2004) have suggested that rational agents
discount the past as well.

Setting aside the question of whether it is rational to discount the past, it is

12For example, whether discount rates are constant over time, the extent to which discount
rates are frame dependent, whether people use exponential or hyperbolic discounting, and so on.
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certainly a part of human psychology. Memories are imperfect and fade over
time. When I decide whether to carry an umbrella when I leave the house, I am
more likely to rely on what I learned yesterday, regarding the weather, than what
I learned last week or last month.

Consider, then, the following modification of the Hoppe-Pólya urn model of
inventing new signals: suppose that the Sender begins with N urns, one for each
state of the world, as before. However, instead of the urns containing discrete
coloured balls, let us use coloured liquids, instead. If the urn has a slow leak,
and all of the liquids drip out at the same rate, except for the black liquid, this
corresponds to a model of signal invention and reinforcement learning with
discounting of the past. The rate of the leak being the degree older information
is discounted in favour of more recent information.

More precisely, let us represent an urn u as a tuple of ordered pairs. An urn
with n signals, plus the mutator, would be as follows:

u =


(m, w), (s1, wi ), . . . (sn, wn)

�
.

The ordered pair (m, w) represents the mutator and its weight, and the ordered
pairs (si , wi ) represent signals and their associated weights.13 As before, signal si
is sent with probability wi

w+
∑

k wk
. The probability that the mutator is selected,

and an attempt is made at inventing a new signal, is w
w+
∑

k wk
.

If the weights are restricted to the natural numbers, we have an ordinary
Hoppe-Pólya urn with discrete balls. If the weights are permitted to range over
the nonnegative reals, we have a Hoppe-Pólya urn which admits discounting of
the past. If β ∈ (0,1] denotes the discount factor, a discounted urn u ′ is obtained
from the urn u in the expected way:

u ′ =


(m, w), (s1,βwi ), . . . (sn,βwn)

�
.

Notice that only the weights attached to signals have the discount factor applied
to them; the weight attached to the mutator is not discounted.

Discounting the past prevents lock-in by effectively placing an upper limit on
the amount of reinforcement. Even if the weight on a signal was reinforced at the
end of every round by adding 1, the cumulative weight would never exceed 1

1−β .
For psychologically plausible discount factors of 0.95 or 0.99, the cumulative
weights are capped at either 20 or 100, respectively.

Although discounting caps the total weight a signal may have, it does not
prune disused signals. A signal that was only used once will, with a discount
factor of 0.99, have a weight of approximately 2.25× 10−44 after 10,000 iterations.

13Strictly speaking, the notation for signals and their weights should include an additional
index for the urn they are in. I have suppressed that, here, to reduce notational clutter.
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Since signals are purely conventional and invented, there is presumably a cost to
maintaining signals as viable possibilities. Given that, let us introduce a cutoff
threshold τ such that, if the weight of a signal in an urn dips below τ, then that
signal will be removed. From the Receiver’s point of view, the contents of her
urns represent possible actions, rather then signals. Because the set of possible
actions are determined by what is physically possible, and aren’t conventional
and invented, when the Receiver discounts the weights in her urn, the cutoff
threshold isn’t applied.

To summarise, the model of inventing and discarding signals with discounting
the past is similar to that of Alexander et al. (2011) with the following variations:
at the end of each round of play, the weights attached to the contents of both the
Sender’s and Receiver’s urns are discounted by a common factor of β ∈ (0,1). A
cutoff threshold of 0< τ is applied to the weights in the Sender’s urn, removed
signals whose weight dips below τ. How does this model cope with a dynamic
environment?

3.1. Learning to signal in a dynamic world

Concerning the case of adding new state-action pairs, in the limit, the Hoppe-
Pólya urn with discounting suffers from the same problem as the original urn
model: eventually, the number of new states will swamp the ability of the Sender
and Receiver to coordinate on a correct response and retain it. This is not a
surprise: discount-the-past deinforces weights more aggressively than the model of
forgetting used by Alexander et al. (2011) by acting on all weights in all urns at
the end of each iteration.

That said, judicious selection of initial weight for the mutator, discount factor,
and cutoff threshold has discount-the-past coping rather well the problem of
adding new states, up to a point. Suppose that the initial mutator weight is 0.001,
the discount factor is 0.99, and the cutoff threshold is 0.0001.14 Comparison of
figure 7 with figure 5 shows discount-the-past outperforming the original Hoppe-
Pólya urn model previously discussed.

It should be noted that the outperformance is largely an artefact of the initial
weight attached to the mutator. In the original Hoppe-Pólya urn model, the
mutator had a weight of one, and any new signals introduced had a weight of two,
with reinforcement by one afterwards for each correct signalling attempt. As
(Skyrms, 2010, pg. 97) noted, for the case of Roth-Erev15 reinforcement learning,

14There is little reason in having the cutoff threshold less than an order of magnitude below
the mutator weight. As the mutator weight isn’t discounted, it is more likely that the Sender will
attempt to generate a new signal than revive a disused-but-correctly-interpreted old signal.

15It should be noted that, at this point, Skyrms was only considering the ease with which a
signalling system could be reached via a process of reinforcement learning. The set of possible
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Figure 7: Discounting the past copes with the addition of new state-action pairs,
up to a point. In the plot, p denotes the probability of adding new states. Here„
m = 0.001, τ = 0.0001 and β= 0.99.

the initial weights make an enormous difference in whether a partial pooling
equilibrium emerges. Given that, it comes as no surprise that initial weights
make a difference in this case as well.

If we lower the initial weight of the mutator to 0.01, the original urn model
behaves more like best-response, with a small probability of error. What was
initially a 2-to-1 chance of re-using a correctly interpreted signal on the second try
now becomes a 200-to-1 chance. This speeds up the initial learning phase, giving
the Sender and Receiver more time to build up a buffer before deinforcement
overwhelms their ability to establish a signalling system as the problem space
grows.16

The aggressive deinforcement provided by discounting the past turns out to
be extremely efficient in adjusting to dynamic environments where state-action
pairs are swapped. Figure 9 illustrates two typical simulation results — one for a
5-state, 5-action signalling game and the other for a 10-state, 10-action signalling
game. The two plots show both the cumulative frequency of successful signalling
attempts and a moving average of length 1,000. The sharp dips in the moving

signals was fixed beforehand, with the question being whether the Sender and Receiver could
spontaneously arrive at a signalling system. The problem of inventing signals, which lead to the
Hoppe-Pólya urn model discussed here, was not broached until later.

16Nevertheless, both learning rules do not do as well as best-response for all we know with inertia.
The reason, of course, is that a best-response rule, once it establishes a correct response to a signal
sent in a given state of the world, will continue to employ that same response in the future.
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Figure 8: The effect of varying initial mutator weights on the Hoppe-Pólya
urn model, with the addition of new states. Beginning from a 1-state, 1-action
signalling problem, a new state was added everything 10,000 iterations. Here,
τ = 0.001 and β= 0.99, with the initial mutator weight w as shown.

average indicate points where the correct state-action response for two randomly
selected states were swapped. Even so, the cumulative effect was minimal, with
the Sender and Receiver maintaining a signalling system with a success rate greater
than 95% in both cases.

The ability of the Sender and Receiver to coordinate on a signalling system
requires an appropriate matching of the discount factor and cutoff threshold to
the size of the signalling problem. One can show that, for any fixed discount
factor β and cutoff threshold τ, there are N -state, N -action signalling problems
which are too large for the players to solve in general. Hence, it follows trivially
that they will be unable to cope with the additional dynamic challenge of learning
when the correct act for a given state has changed. To see this, first assume
(without loss of generality) that all states are equiprobable. Then the expected
waiting time between the i th and i + 1th observation of state k by the Sender is
N iterations. Suppose that N > log(τ/2)

log(β) , and suppose that the Sender had invented
a new signal after the i th observation of state k, and the Receiver had responded
to it correctly. Then the typical weight attached to that signal, the next time
state k is encountered, would be

2βN < 2β
log(τ/2)
log(β) = τ.

Since 2βN falls below the cutoff threshold, that signal would have been eliminated
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(a) Simulation results for a 5-state, 5-action signalling problem.
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(b) Simulation results for a 10-state, 10-action signalling problem.

Figure 9: Adjusting to a dynamic environment involving a swap of state-action
pairs by discounting the past. Here, the simulations used a Hoppe-Pólya urn
model with a discount factor of 0.99, initial mutator weight of 0.1, and a cutoff
threshold of 0.01. The probability of swapping state-action pairs was 0.0001.
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from the urn before the i + 1th encounter of state k. In other words, even if the
Sender and Receiver had managed to establish a signalling convention through
trial-and-error, they will be unable to retain that convention over time due to
infrequent reinforcement.17

In summary, Skyrms’s model of Hoppe-Pólya reinforcement learning, aug-
mented with the ability to forget signals, cannot cope with a dynamic environ-
ment in which the correct response to a given state of the world is exchanged with
another. However, Hoppe-Pólya reinforcement learing with discounting proves
remarkable effective at adjusting to a dynamic environment. And both models
of reinforcement learning become overwhelmed for any fixed set of learning
parameters (i.e., forgetting rate, size of the discount factor, and so on) as the
signalling problem size grows.

Since best-response for all we know also adjusts to the two types of dynamic
environments considered here, why bother at all with reinforcement learning,
discounted or not? There are three reasons. First, reinforcement learning does
not require that players have some knowledge of the possible payoffs. Second,
as the analysis in appendix A shows, best-response for all we know does not han-
dle the dynamic problem of swapping states significantly better than that of
reinforcement learning with discounting, once the problem becomes sufficiently
large. Finally, reinforcement learning with discounting turns out to automatically
generate an additional phenomenon associated with natural languages: linguistic
drift.

3.2. Generating linguistic drift

In the models of reinforcement learning, both with or without signal invention,
studied by Skyrms (2010), signalling systems are unlikely to change, once estab-
lished. In order for an urn model of reinforcement learning to switch from one
signalling system to another, an extremely unlikely series of events would have to
occur. The same holds true for the model of signal invention with forgetting of
Alexander et al. (2011). Yet natural languages are continuously evolving entities.
And although the English spoken by Chaucer is radically different from the
English spoken today (so much so as to be largely unintelligible to contempo-
rary speakers of English), the transition between the two forms occurred with
successful communication at each point along the way.

One interesting consequence of reinforcement learning with discounting in

17We may assume that all states are equiprobable without loss of generality because this
assigns the greatest possible probability to all states. Any distribution which is not equiprobable
necessarily assigns more than 1

N weight to at least one state and less than 1
N weight to at least

other state. States assigned less than 1
N weight will have successful signals discounted out of the

Sender’s urn more rapidly, and so the result holds for those states, too.
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sender-receiver games is that linguistic drift occurs. Figure 10 illustrates one
such outcome for the Hoppe-Pólya urn model with a discount factor of 0.97.
Initially, the Sender and Receiver establish a signalling scheme using signals 1, 3,
and 4 to denote the three states of the world. Further into the game, signal 4 is
dropped, with signal 32 used in its place. And later still, signal 3 is exchanged
for signal 61. As the cumulative frequency plot shows, this occurs without the
players communicative ability being impaired at all.

The mechanism underlying drift is straightforward. With a discount factor of
β= 0.97, the maximum weight attainable by a signal is 100

3 ≈ 33.3. (In practice,
since any state occurred only a third of the time, the effective weights were
around a third of the maximum.) Hence there was roughly a 1 in a 100 chance
that the mutator would be selected when a given state of the world occurred.
This ensures a steady stream of synonymous signals being generated. Since
the weight attached to a newly-created synonym is considerably lower than the
previous signal, the odds are that the synonym will be played less frequently
and, eventually, eliminated once its weight dips below the cutoff threshold. But
this does not always occur: sometimes the synonym not only persists but winds
up being used more frequently than the former signal. When this happens, the
weight attached to the former signal can decrease over time until it is eliminated.

4. Conclusion

The majority of work done on Lewis sender-receiver games has assumed a fixed
relation between the state of the world and the correct action to be performed in
that state. Dynamic sender-receiver games, where the state-action relation can
vary over time, present a much harder problem for boundedly rational agents to
solve. Although positive reinforcement of correct responses is required, as this
enables a solution to the signalling problem to be learned, this must be balanced
against the need to prevent lock-in, as this prevents players from being able to
adjust rapidly to changes in the environment.

We have seen that none of the models of reinforcement learning discussed
by Skyrms (2010) or Alexander et al. (2011) are capable of solving the two
types of dynamic sender-receiver games considered here. However, a model
of reinforcement learning in which the past is discounted proves surprisingly
effective at being able to handle dynamic sender-receiver games. In some cases it
is roughly on par with that of best-response for all we know.

One interesting possibility for future research concerns revisiting the model
of Barrett (2007), in which sender-receiver games are used to show how incom-
mensurable sets of kind terms may be generated from a common starting point.
Given that discounting the past gives rise to linguistic drift, one wonders if it

19



0 5000 10 000 15 000 20 000
0.0

0.2

0.4

0.6

0.8

1.0

Iteration

Fr
eq

ue
nc

y

Cumulative frequency of successful signaling attempts

Signals
mutator 1 3 4

State 0 0.1 0 11.1 0
State 1 0.1 11.5 0 0
State 2 0.1 0 0 9.52

Actions
Act 0 Act 1 Act 2

Signal 1 ε 11.5 ε
Signal 3 11.1 ε ε
Signal 4 ε ε 9.52

(a) 4,000 iterations

Signals
mutator 1 3 32

State 0 0.1 0 9.76 0
State 1 0.1 10.8 0 0
State 2 0.1 0 0 11.3

Actions
Act 0 Act 1 Act 2

Signal 1 ε 10.8 ε
Signal 3 9.76 ε ε
Signal 32 ε ε 11.3

(b) 11,000 iterations

Signals
mutator 3 32 61

State 0 0.1 10.2 0 0
State 1 0.1 0 0 13.9
State 2 0.1 0 8.14 0

Actions
Act 0 Act 1 Act 2

Signal 3 10.2 ε ε
Signal 32 ε ε 8.14
Signal 61 ε 13.9 ε

(c) 16,000 iterations

Figure 10: An illustration of linguistic drift between signalling systems while
maintaining nearly perfect communication. The game was a 3-state, 3-action
sender-receiver game, all states equiprobable, with a discount factor β= 0.97. (ε
represents a negligible weight.)
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would be possible to show drift occurring in kind terms. Barrett (2009) has shown
that changing the reinforcement function can cause the players to arrive at a
signalling system formally incommensurable with one used earlier. However, as
Barrett notes, this happens when “the agents are punished so severely by the new
reinforcement functions for failing to capture finer-grained distinctions that their
propensities are pushed low enough that they must retool and start over again
in evolving the new language.” If players effectively start from scratch, it is not
surprising that the new signalling system reached may be incompatible with the
one used previously. But suppose that players could move from one set of kind
terms to a new set of kind terms, incommensurable with the first, communicating
each step of the way. Would that not constitute a counterexample to Kuhn’s
claim that communication across incommensurable paradigms is impossible?
Determining whether such linguistic drift is possible remains an open question.
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A. Markov chain analysis

We can calculate the mean time for best-response for all we know, with inertia to
adjust to a swap of the state-action pairs by modelling it as a Markov process.
Assume that we have an N -state, N -action signalling game with state probabilities
specified by 〈p1, . . . , pN 〉. Suppose also that the Sender and Receiver had coordi-
nated upon a signalling system when the correct response to two states of the
world were exchanged.

Let us adopt the following notation for describing states of the Markov chain:
[sk] The correct response to state sk has changed, although this fact is cur-

rently unknown by the players.

sk? The players know that the past response to state sk is no longer correct,
but they have not yet figured out a signalling scheme which produces
the correct response.

bsk The Receiver has performed the correct action to a new signal for state sk ,
thereby establishing a new component of a signalling system.

Now suppose that the correct response for states i and j have been swapped.
This is the starting state of the Markov process, indicated by the leftmost node
in figure 11. Because neither the Sender nor the Receiver know that the correct
response to states i and j have changed, this node is labelled ‘[si][s j ]’ as per the
above.

Once the players know that the previous responses to states i and j are no
longer correct, let us assume that the Sender throws away the signals formerly
associated with those states and sends a new signal each time state i or j occurs.
Let us also assume that the Receiver, upon receipt of a new signal, selects an
action at random. Thus the transition probability from a state labelled with ‘si ?’
to a node labeled with ‘bsi ’ is pi

N (and mutatis mutandis for state j ). It is obvious
that the state ‘bsi bs j ’ at the right of figure 11 is the sole absorbing state.

Let ~k = 〈k1, . . . , k9〉 denote the vector of mean hitting times of the absorbing
state. Obviously, k9 = 0. The values of the remaining ki are related according to
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Figure 11: The Markov process describing how the Sender and Receiver adjust to
a swapping of state-action pairs using best-response for all we know, with inertia.
States have been labelled with numbers for purposes of reference.

the following equations:

k1 = 1+ k1

�
1− pi − p j

�
+ k2 pi + k3 p j

k2 = 1+ k2

�
1− pi

N
− p j

�
+ k4

pi

N
+ k5 p j

k3 = 1+ k3

�
1− pi −

p j

N

�
+ k5 pi + k6

p j

N
k4 = 1+ k4

�
1− p j

�
+ k7 p j

k5 = 1+ k5

�
1− pi + p j

N

�
+ k7

pi

N
+ k8

p j

N
k6 = 1+ k6

�
1− pi

�
+ k8 pi

k7 = 1+ k7

�
1− p j

N

�

k8 = 1+ k8

�
1− pi

N

�

Solving this for k1, the mean hitting time of the absorbing state when we begin at
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state 1, gives:

k1 =
1

pi

+
pi

p j

�
pi + p j

� +
N p2

j

pi

�
pi + p j

��
N pi + p j

�

+
(N + 1)N 2 p j�

N pi + p j

��
pi +N p j

� +
N p2

i

�
N pi +N 2 p j +N p j + p j

�

p j

�
pi + p j

��
N pi + p j

��
pi +N p j

� .

Assuming that all states are equiprobable, so that pi = p j =
1
N , the expected time

for the players to arrive at a solution to the two swapped states when N = 3 is
16.875. When N = 20, the time increases to 620.476, and when N = 30, it is
1380.48.

Now consider the related problem of how quickly players who use Hoppe-
Pólya urns with discounting can adapt to the problem of swapped states. For
simplicity, assume that discounting has already depleted the Sender’s urns for
states i and j of everything except the mutator. Figure 12 illustrates a simple
Markov chain modelling this system.

Empty urns
for si and s j

1©1− pi
N −

p j

N

Correct response
for si found

2©
pi
N

1− p j

N

Correct response
for s j found

3©
p j

N

1− pi
N

Correct response
for both found

4©

p j

N

pi
N

Figure 12: A Markov process approximating how the Sender and Receiver adjust
to a swapping of state-action pairs using Hoppe-Pólya urns with discounting.

As per the standard method, the set of recurrence equations which need to be
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solved are as follows:

k1 = 1+ k1

�
1− pi

N
− p j

N

�
+ k2

pi

N
+ k3

p j

N

k2 = 1+ k2

�
1− p j

N

�

k3 = 1+ k3

�
1− pi

N

�
.

The solution is k1 =
N pi

p j (pi+p j )
+ N

pi
. If, as before, we assume equiprobable states,

then the mean hitting time of the absorbing state when N = 3 is 13.5. Larger
signalling problems, such as when N = 20 have a mean hitting time of 600,
which is slightly less then that of best-response for all we know, with inertia. For
N = 30, the time is 1350, also slightly less than the best-response time. Of course,
not reflected in these times is the wait needed to make the assumption that the
Sender’s urns for i and j are empty except for the mutator. With a discount factor
of 0.95 and a cutoff threshold of 0.1, the additional waiting time is on the order
of 60 iterations. Overall, best-response is slightly more efficient than discounting
for larger signalling problems, but not significantly so.
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