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Abstract

At the very end of the 19th century, Gabriele Tarde wrote that all so-
ciety was a product of imitation and innovation. This view regarding the
development of society has, to a large extent, fallen out of favour, and espe-
cially so in those areas where the rational actor model looms large. I argue
that this is unfortunate, as models of imitative learning, in some cases,
agree better with what people actually do than more sophisticated models
of learning. In this paper, I contrast the behaviour of imitative learning
with two more sophisticated learning rules (one based on Bayesian updat-
ing, the other based on the Nash-Brown-von Neumann dynamics) in the
context of social deliberation problems. I show for two social deliberation
problems, the Centipede game and a simple Lewis sender-receiver game,
that imitative learning provides better agreement with what people actu-
ally do, thus partially vindicating Tarde.

By the end of the 19th century, hopes that we were getting close to a com-
plete scientific understanding of the world were running high in some quarters.
Perhaps the greatest indicator of such hopes was when Lord Kelvin declared in
his address to the British Association for the Advancement of Science, “There
is nothing new to be discovered in physics now. All that remains is more and
more precise measurement.” And these hopes regarding our ability to explain
were not just limited to the physical world, but extended to the social world,
the world of human behavior, as well. For in 1890, just ten years prior to Lord
Kelvin’s pronouncement of the end of physics, Gabriele Tarde, a French soci-
ologist, stated in similar grandiloquent fashion that he had identified the funda-
mental forces governing society: “What is society? I have answered: society is
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imitation.” (Tarde, 1903, pg. 74) In a later expansion of the same idea, we find:
“[a]ll resemblances of social origin in society are the direct or indirect fruit of
the various forms of imitation.”1

Of course, from a contemporary perspective most declarations exhumed
from the dustbin of history appear ridiculous. (Everything is made of water?)
But whereas we might be willing to overlook the hubris of Lord Kelvin, given
that his remarks about the “end of physics” must be viewed alongside his pre-
scient identification of the two outstanding issues which led to modern physics2,
there seems less reason to exercise a similar degree of charity for M. Tarde. Soci-
ety is not just a product of imitation and innovation by individuals. How could
anyone think it was? Our social lives are shaped by a rich variety of factors
which Tarde’s theory omits, such as social norms, strategic reasoning, empathic
concern for the well-being of others, the requirements of duty, obligation, and
so on. These factors shape our behaviour and thought in ways which cannot be
reduced to mere imitation.

Yet even though Tarde’s theory, as a complete account of society, is false,
that does not mean there are no insights worth preserving. Indeed, in recent
years there has been a small resurgence of interest3 in the writings of this French
sociologist who was, at the time of his death, considered one of the greats among
Comte, Darwin and Spencer (Millet, 1970). In what follows, I offer an attempt
to partially rehabilitate, and partially vindicate, the views of Tarde regarding the
importance of imitation for society. This partial vindication occurs in a very
limited sense: I will argue that imitation, when used as a heuristic by bound-
edly rational individuals, selects the socially optimal outcome in several social
deliberation problems much more readily than two other types of deliberative
procedures. (The other two types of deliberative procedures being derived from
the work of Nash and Bayes, hence the title of this paper.)

What this means is that imitation can be seen as a method for generating
and supporting some socially beneficial practices, even if it is not the universal

1In these passages, Tarde speaks as if imitation were the only social force in operation, but
that is obviously insufficient: imitation requires something to imitate, and so there must be a
second force at work which generates innovative behaviours. Tarde was well aware of this, even
if he omitted the role of invention at times. He does state rather earlier that “[s]ocially, every-
thing is either invention or imitation” (Tarde, 1903, pg. 3). I suspect his tendency to emphasize
imitation over invention was due to his belief that imitative behavior was subject to law, whereas
invention was not. See, for example, The Laws of Imitation, pg. 142.

2In a lecture entitled “Nineteenth-Century Clouds over the Dynamical Theory of Heat and
Light,” Lord Kelvin noted that the current physics of the time could not provide a satisfactory
account of black body radiation and the Michelson-Morley experiment. These two outstanding
problems eventually led to the development of quantum mechanics and relativity theory.

3Latour (2002), for example, argues that Tarde can be viewed as a intellectual precursor to his
“actor-network” theory.
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social explanans that Tarde thought. That might not sound all that interesting
or important, but it becomes so once we factor in when people choose to imi-
tate. In the models I present, imitation occurs when individuals, who are purely
motivated by the desire to maximize their personal gain, believe they can do
better by adopting the behaviour of another. Contrast this with the well-known
fact that other decision rules which seek to maximize individual gain often fail
to generate socially optimal outcomes, as in the tragedy of the commons, the
prisoner’s dilemma, and the centipede game. Imitation, then, provides a way for
individuals to strive to maximize their own personal gain in a way which does
not preclude arriving at socially optimal outcomes. That, I think, is a claim
worth noting.

1. Social deliberation problems.

In what follows, I shall take a social deliberation problem to refer to problems of
the following form: a population of agents faces a multitude of interdependent,
noncooperative, two-person decision problems, with the special property that
each individual, when he chooses an action, has to use that action regardless of
whom he interacts with.4 It is a social deliberation problem in the sense that I
cannot choose to condition my behaviour on the identity of persons I am going
to interact with. (Think of it as my having to choose a single “face” which I
present to all members of society.) It is a social deliberation problem in the sense
that each individual does not have a fixed idea in her mind as to what she is going
to do, and so will modify her beliefs in response to others.

Let us formulate this more precisely. Let P = {1, . . . ,N} denote the pop-
ulation of agents and let M be the payoff matrix for the two-player decision
problem as follows:

M =









〈r11, c11〉 · · · 〈r1n, c1n〉
... . . . ...

〈rn1, cn1〉 · · · 〈rnn, cnn〉









.

Note that the payoffs for the two players may not be equal, but it is required

4One might wonder whether the requirement that the decision problem be noncooperative
unduly restricts the kinds of problems that can be treated as social deliberation problems. In
principle I don’t see why it needs to, if one is willing to adopt the approach of the Nash program
to embed cooperative game theory within noncooperative game theory. Another concern may
be with why I restrict attention to two-player games. Essentially, it makes the formal models
simpler; the requirement that players use a single strategy with everyone they interact with
effectively transforms the “real” game from a two-player game to one where people “play the
field” (in a certain sense).
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that the same number of strategies be available for both, regardless of whether
they play as row or column.

One important feature about society is that it has structure. Social structure
can be modeled in a variety of ways, but the most important aspect of it is that
it endures and constrains individual choice and action. Adopting a model of
social structure which I have used elsewhere (Alexander, 2007), let us model the
structure of society by a directed graph G = 〈P, E〉, where the set of directed
edges E represents a binary relation of some particular social importance (such
as X being a friend of Y , X being an acquaintance of Y, and so on). Given a
particular individual i , the set of players with whom i shares an edge with are
the neighbours of i . The neighbours of a player are the individuals with whom
he plays the game. If i and j are connected by an edge pointing from i to j , that
means when the two play a game, i plays as Row and j plays as Column.

People deliberate when they are uncertain about what to do. The state of un-
certainty of each player is represented as a probability distribution over the pos-
sible actions available to him. (I shall treat “action” as synonymous with “strat-
egy” given that we are working in a game theoretic context.) We can think of the
state of uncertainty of player i , at time t , as a vector ~pi (t ) = 〈pi1

(t ), . . . , pin
(t )〉,

where pin
(t ) denotes the probability that i assigns to action n at time t . This

probability may be interpreted as a measure of how “desirable” that action ap-
pears to i at the time.

How do people deliberate, and how do people end up revising their state
of uncertainty as a consequence of their deliberations? It is easy to imagine a
variety of ways this might happen. It turns out that there is a natural way to
extend the two-person deliberative dynamics of Skyrms (1990) to the socially
structured setting envisioned here.5 Let us assume that people’s deliberation
over how to revise their state of uncertainty occurs in two stages: first, a player
deliberates about how she would revise her state of uncertainty for each pairwise
interaction with a neighbour, given what she knows about him or her. Second,
once the player has determined what each of these pairwise revisions would be,
she then proceeds to aggregate, or pool, these multiple revisions into a single
state of belief.

Again, let us state this more precisely. Suppose that ηi = {i1, . . . , i j } denotes
the set of neighbours of player i . If ~pi (t ) denotes the state of uncertainty of
player i at time t , let ~pi ,ik

(t + 1) denote the state of uncertainty that player i
would have at time t+1, if she revised her current state of uncertainty given just
what she knows about ik . (Hence ~pi ,ik

(t + 1) also denotes what i ’s future state

5Another version of this deliberative model can be found in Alexander (2009). However, the
primary aim of that paper concerned the outcomes of social deliberation in simple coordination
games like the Driving game, Battle of the Sexes, and Chicken.
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of uncertainty would be if she had only one neighbour, namely ik .)
Once player i has calculated the pairwise refinements ~pi ,ik

(t+1) for all of her
neighbours ik ∈ ηi , she then aggregates these possible refinements into a single
probability distribution over action. The aggregation rule I assume players use
is the following6:

~pi (t + 1) =
1

j

j
∑

k=1

~pi ,ik
(t + 1).

This is a linear pooling method for aggregating probabilities; it also assigns equal
weights to each of the possible pairwise refinements of i ’s current state of un-
certainty. Using equal weights makes sense if all of i ’s neighbours are equally
important to her. (One could easily generalize this by attaching weights to edges
to indicate how important player j was to player i .)

Assuming that players use a linear pooling method for aggregating their pos-
sible future states of uncertainty makes sense because such methods are the only
ones which satisfy the following requirements (Lehrer and Wagner, 1981):

1. The aggregate probability player i assigns to strategy σk in his state of
uncertainty at time t + 1 depends only upon the probability i assigns to
σk in each pairwise refinement to his state of uncertainty.

2. If a player assigns probability zero to a strategy in each pairwise refine-
ment to his state of uncertainty, then that player assigns probability zero
to that strategy in his aggregate state of uncertainty.

These are reasonable requirements to impose.
What deliberative rule do people use when calculating the pairwise refine-

ments of their state of uncertainty? I shall consider two: the first employs what
is known as the Nash-Brown-von Neumann dynamics, as it derives from the
function Nash used in his proof of his fixed point theorem. (I shall refer to
this as just the “Nash dynamics” for simplicity.) The second rule is a variant
of Bayesian updating.7 Both dynamical rules provide an approximation of how
rational agents would deliberate over what to do. And both of these dynamical
rules are in keeping with what a view of human agents as sophisticated deliber-
ative agents would endorse.

On the other hand, Gabriele Tarde thought that the deliberative dynamics
underlying society were rather different from the above. He thought that society
existed as a consequence of imitation. We can easily formulate a social network

6Note that the value of j depends on the number of neighbours player i has. I have sup-
pressed this dependence to make the notation more clear.

7Definitions of these two rules can be found in appendix A.
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model of imitative learning. As before, assume that there is a social network
which determines who interacts with whom. Let us assume that each person
plays the game with every one of his neighbours, receiving a score equalling the
sum of the individual payoffs from each pairwise interaction. At the end of each
round of deliberation, each player i looks at his set of neighbours and adopts
the strategy used by his neighbour who did the best (assuming, of course, that
this payoff exceeds the payoff of player i ). This dynamic is known as “Imitate
the Best” and has been suggested as a useful heuristic for boundedly rational
individuals (see Gigerenzer and Selten, 2001).

These two different models of social deliberation impose substantially dif-
ferent requirements on what people know.8 The Nash dynamics and Bayesian
dynamics assume that, when i and j are connected by an edge, that each player’s
full state of uncertainty is common knowledge. They also assume that the delib-
erative rule used by i and j is common knowledge. On the other hand, Imitate-
the-Best makes no such assumptions. Imitate-the-Best does not assume that each
player’s state of uncertainty is known by anyone else in the population. More-
over, when a person adopts a new strategy through imitation, the new strategy
is, in this model, necessarily a pure strategy rather than a probability distribu-
tion. Why? If i imitates j , player i adopts the last move made by player j in the
game. But the last move of player j is a pure strategy.9

We have, then, two different kinds of models of social deliberation. One
model treats individuals as highly rational, with considerable amounts of com-
mon knowledge about their neighbours, willing to use sophisticated aggregation
techniques to try to find the optimal outcome. The other model treats individ-
uals as boundedly rational, with very little knowledge about their neighbours,
who simply imitate the best. In the next two sections I show that imitative learn-
ing, rather than the more sophisticated models of social deliberation, is better
suited for producing socially optimal outcomes in the Centipede game and in a
Sender-Receiver game.

2. The Centipede game.

The Centipede game (see Rosenthal, 1981) is a well-known example of an in-
terpersonal decision problem in which the traditional game theoretic analysis

8There are only two different models because the knowledge assumptions for the Nash dy-
namics and the Bayesian dynamics are the same.

9Think of it this way: if an agent only sees a finite sequence of actual actions you have made,
that agent cannot reconstruct what your underlying probability distribution is, since any finite
sequence is compatible with any probability distribution. If the agent were to try to track the
frequency with which you have chosen certain actions, we do not have a model of imitation but
rather inductive learning.
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conflicts with what our intuitions suggest as the way to play. Figure 1 illustrates
a six-stage Centipede game.10 Player I begins at the root node, located at the far
left, and has two choices: either take the amount available, or pass to the other
player. If player I chooses to pass, Player II faces the exact same choice: take what
is available, or pass control back to player I. Inspection of the payoffs show that
the socially optimal outcome (here, a collective payoff of 14) occurs when both
players always choose Pass. However, if one solves the game using backwards
induction, it turns out that what player I should do is choose Take on the very
first move, giving himself a payoff of 2 and player II a payoff of zero.11

p

t

I p

t

I p

t

III

t

p II

t

p II

t

p

(2,0) (1,3) (4,2) (3,5) (6,4) (5,7)

(8,6)

Figure 1: A six-stage Centipede game.

Although backwards induction recommends that player I take on the first
move, this conflicts with the intuitions of some that even rational players should
move to the right in the beginning, at least for a while, before choosing to move
down. These intuitions are borne out by experiment. McKelvey and Palfrey
(1992) report that, in a six-stage centipede game, only 1% of the players chooses
Take on the first move. When the game reaches the final stage, 15% of the time
the last player chooses Pass, thereby playing a dominated strategy but, at the
same time, producing the socially optimal outcome.12

10The game takes its name from the fact that in the original formulation there were a hundred
such segments. The same tension exists in the shorter version.

11Consider the last choice node for player II. If she chooses pass, she receives a payoff of 6
but if she chooses take, she receives a payoff of 7. A rational agent interested in maximising her
personal gain will choose take (thus giving player I a payoff of 5). Player I knows this, and so at
his last choice node will prefer to preempt player II’s decision by choosing take, since that gives
him a payoff of 6, which is greater than 5. Continuing this reasoning leads to the outcome that
player I will choose take at the very start of the game.

12Somewhat curiously, people continue to deviate from the game theoretic prediction even in
constant-sum centipede games. (A constant-sum centipede game is one where the pot, instead of
growing with each Pass as in figure 1, remains constant over time; in these games, choosing Pass
repeatedly has the effect of increasing the amount given to player II.) In a later paper, Fey et al.
(1996) report on a number of constant-sum experiments they conducted at CalTech, Pasadena
City College, and the University of Iowa. In these experiments, people chose Take as their first
move approximately 59% of the time. This is not that surprising, given that the resulting payoffs
when player I chose Take led to a equal share of the pot (payoffs of 1.60 each). But notice what
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Experimental results such as these have been viewed as showing that there
is an important mismatch between the outcomes of the traditional analysis and
what people both do and think they ought to do. Martin Hollis offers the fol-
lowing trenchant critique:

“The Centipede seems to me to force the basic issue neatly. One
could still shrug one’s shoulders and comment that, since the logic
clearly tells the first player to open by playing down, there is no
more to be said. But, whereas a similar shrugging off of a mutually
inferior outcome in the Prisoner’s Dilemma might be a fair com-
ment on a dismal fact of real life, the Centipede is a scandal for Game
Theory.” (Hollis, 1994)

What’s his proposed solution to the scandal? Hollis thinks that it requires re-
placing the underlying model of human agent, swapping homo economicus for
the more socially sensitive, norm-based, rule-concerned, other-focused homo so-
ciologicus.

Saying that the Centipede game is a scandal for game theory strikes me as a
bit hyperbolic, but it does raise the question of to what extent we can reconcile
observed behavior with the maximizing assumptions underlying game theory.
Perhaps moving to an evolutionary game theoretic perspective may help. Let us
now compare the outcomes of the various models of social deliberation intro-
duced so far.

Figure 2 illustrates the outcome of a process of social deliberation for a group
of 13 agents who play a ten-stage Centipede game. The social structure used is
a ring with the direction of edges selected so as to ensure each agent plays the
game once in the role of player I and once in the role of player II. The state of
uncertainty of an agent is represented using a pie chart, with the size of the i th
wedge reflecting the probability assigned to action i by the agent. In the simula-
tion shown, everyone in the population initially is disposed to put probability
1 on choosing Take on stage 10.13 Under the Nash dynamics, social deliberators
immediately begin adjusting their beliefs so as to move away from the socially
optimal strategy, converging to the traditional game-theoretic outcome.

Figure 3 illustrates the process by which this happens from the point of view
of one of the agents. (To make the following discussion more clear, let us denote

this implies: 41% of the time, player I elected to Pass, apparently favouring an unequal allocation
of payoffs giving more to player II than himself.

13There is good reason for choosing this as the initial state of the population. The Nash
dynamics have the property that a player who initially assigns zero probability to an action
may, after revision, assign positive probability to that action. (This is an important point of
difference between the Nash dynamics and Bayesian updating.) If a population of agents who
initially assign probability 1 to moving to the far right of the Centipede game evolve to another
outcome, this shows that the socially optimal outcome will never evolve.
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(a) Initial conditions. (b) After 150 revisions.

(c) After 300 revisions. (d) After 450 revisions.

Choose Take at 1

Choose Take at 2

Choose Take at 3

Choose Take at 4

Choose Take at 5

Choose Take at 6

Choose Take at 7

Choose Take at 8

Choose Take at 9

Choose Take at 10

Figure 2: The evolution of the traditional game-theoretic outcome for the Cen-
tipede Game under the Nash dynamics (with an index of caution of 10).
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the action Choose Take at Stage n by Sn.) Suppose that I and my neighbours
initially begin by assigning probability one to S10. When I revise my beliefs
under the Nash dynamics, the first thing I need to do is calculate the covetability
of each possible action available to me. When my neighbours assign probability
one to S10, the only action with positive covetability is S9. (By symmetry, by
neighbours will conclude the same thing.) This means that the new state adopted
by both I and my neighbours will be one which puts some small probability ε
on the action S9 and probability 1− ε to the action S10.

The next time I revise my beliefs, I compute that both S8 and S9 have positive
covetability, and so I adopt a new state which assigns positive probability to the
actions S8, S9, and S10. Again, by symmetry my neighbours will do the same
thing. As figure 3 illustrates, these three actions will be the only ones to which I
assign positive probability for some time; each successive iteration of the social
deliberation process will result in me reducing the probability I assign to S10
and increasing the probability I assign to S8 and S9. Around the fiftieth revision,
though, I find the action S9 ceases to have a positive covetability, and at this point
I will start transferring probability away from both S9 and S10 to S8. Eventually
it will be the case that the action S7 will have positive covetability for the first
time, and at this point I start increasing the probability of both S7 and S8 at the
expense of S9 and S10. (Inspection of figure 3 reveals that this occurs around the
70th iteration of the social deliberation process.) In this fashion, I eventually
work my way to putting probability one on S1.

14

The general tendency for Nash deliberators to move towards the game-theoretic
solution is not affected by variations in social structure. Figure 4 illustrates the
outcome of a social deliberation process on a randomly structured social net-
work. Notice that the variability of the number of neighbours does influence
the particular probability distribution agents adopt as they revise their beliefs,
but it does not affect the long-term result of moving towards the action Choose
Take at Stage 1. The overall moral of the story is clear: the deliberative outcomes
generated by the Nash dynamics do not correspond with what people actually
do when faced with the Centipede game.

What happens if people are Bayesian deliberators, rather than Nash delibera-
tors? It turns out that the overall qualitative result is basically the same: Bayesian
deliberation leads the population towards the traditional game-theoretic out-
come in the Centipede game.15 Both models of deliberation prove to be equally

14Convergence to putting probability 1 on S1 only occurs in the limit.
15With the proviso that the initial belief state of every agent assigns some positive probabil-

ity to every possible action. Whereas the Nash dynamics can cause an agent to assign nonzero
probability to an action that was initially assigned zero probability, any action assigned zero
probability will, under the Bayesian dynamics, always be assigned zero probability in the fu-
ture. The qualitative result holds in the following sense: suppose that the population starts out
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Figure 3: A time-series plot illustrating the evolution of the probability distri-
bution for one of the Nash deliberators in figure 2. The x-axis labels indicate
which stage in the deliberative process the bar represents, and each bar repre-
sents the probability distribution held by the individual at a given time. The
colour-coding is the same as in figure 2.
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(a) Initial conditions. (b) After 150 revisions.

(c) After 300 revisions. (d) After 450 revisions.

Choose Take at 1

Choose Take at 2

Choose Take at 3

Choose Take at 4

Choose Take at 5

Choose Take at 6

Choose Take at 7

Choose Take at 8

Choose Take at 9

Choose Take at 10

Figure 4: The evolution of the traditional game-theoretic outcome under the
Nash dynamics (with an index of caution of 10) on a random network.

poor predictors of what people actually do.
When the social deliberation process takes place using imitative learning,

the story is radically different. Figure 5 illustrates the outcome of one simula-
tion using imitative learning where the underlying social network is a lattice.16

Whereas the previous two deliberative methods proved so hostile to the socially
optimal outcome that a population which started in the socially optimal state
would quickly leave it, here the situation is entirely the reverse. If the popula-
tion begins in the state where everyone follows the strategy Choose Take at Stage
1 and people experiment with new strategies, the population will quickly leave
the socially inefficient state and move towards the socially optimal one. In the
simulation of figure 5, new strategies are introduced with a probability of 2.5%
and within 75 iterations virtually everyone in the population has adopted Choose

with every agent assigning probability 1− ε to S10 and probability 1
9ε to S1, . . . , S9. Bayesian

deliberators will modify their beliefs so as to move towards the game-theoretic solution.
16Individuals interact with their eight nearest neighbours and learn from the same group via

imitation.
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Take at Stage 10.17

(a) Initial conditions (b) After 25 iterations.

(c) After 50 iterations. (d) After 75 iterations.

Choose Take at 1

Choose Take at 2

Choose Take at 3

Choose Take at 4

Choose Take at 5

Choose Take at 6

Choose Take at 7

Choose Take at 8

Choose Take at 9

Choose Take at 10

Figure 5: Imitative learning leads to the adoption of the socially optimal out-
come in the Centipede game.

How likely is it that imitative learners will adopt the socially optimal out-
come in the Centipede game? One way of answering this question is through
simulation. Because imitative learning is sensitive to the shape of the social
network, we will need to sample a variety of different network topologies to
control for this dependence.18 Figure 6 lists the results from 1,000 simulations
on random connected networks of 150 agents.19 Each simulation was run for

17That is, each individual in the population has a 2.5% chance of replacing his current strategy
with a randomly chosen one. With a population of 10,000, approximately 250 individuals will
experiment with a new strategy every iteration. Less frequent experimentation rates will still
lead to convergence to the socially optimal state (provided that the social network is a lattice);
the only substantive difference will be how long it takes convergence to occur.

18To see why imitative learning depends on the shape of the network, recall the definition
of imitate-the-best: a player P adopts the strategy of the person in their neighbourhood who
received the highest payoff (provided this payoff was greater than P ’s payoff). In an irregular
social network, some agents with have more neighbours than others. Agents with more neigh-
bours are more likely to have their strategy adopted by others simply because they engage in
more interactions.

19The random networks were generated with a 3% edge probability with the direction deter-
mined by a coin flip. That is, each possible edge had a 3% of being selected for inclusion; if it
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Aggregate results over all 1,000 simulations

Stage at which to begin opting out

Figure 6: Aggregate results for imitative learning over 1,000 simulations.

300 iterations until convergence (or near-convergence) occurred and the surviv-
ing strategies counted. The height of each bar in figure 6 indicates how many
agents, out of all 1,000 simulations, followed that strategy after 300 iterations.
There are several points worth noting. First, virtually no agent chose Take be-
fore stage 4. Second, although the strategy which produces the socially optimal
outcome appears quite often among the surviving strategies, it is by no means
the only such strategy. While the vast majority of agents would choose Pass for
the first five stages of the Centipede game, once the game entered the sixth stage,
agents become increasingly likely to choose Take.

The true test of any model is how well it accounts for the experimental data.
How does modelling people as boundedly rational imitative learners fare? Recall
that McKelvey and Palfrey (1992) found that approximately 15% of subjects in
experiment would choose the socially optimal outcome in the Centipede game.
The socially optimal outcome in these models occurs when agents choose Take
in stage 10.20 According to figure 6, approximately 20,000 individuals over the
1,000 simulations followed this strategy at the end of the simulation. Since the
total number of strategies counted was 150,000, the socially optimal outcome
occurred 20,000

150,000 = 13.3% of the time. Perhaps we do not need to replace homo
economicus with homo sociologicus in order to account for what people do in the

was selected, a coin flip determined whether the edge went from A to B or from B to A. Since
there are 150× 149 = 22,350 possible edges on a graph containing 150 nodes, each graph con-
tained approximately 671 edges. Once a graph was randomly generated, it was tested to ensure
it was connected. If it was not connected, that graph was thrown away and another random
graph generated. Initial strategies were randomly assigned to players from a randomly chosen
distribution.

20Choosing Pass at stage 10 was not a option.
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Centipede game. It may be that we just need to find the right model of how
people try to maximise.21

3. Lewis Sender-Receiver games.

Another interesting family of social deliberation problems to consider are the
two-player sender-receiver games introduced by David Lewis in Convention as
a model for the emergence of language.22 In a sender-receiver game, Nature
chooses a state of the world and reveals it to one player, known as the Sender,
who then sends a signal to a second player, known as the Receiver. Upon receipt
of the signal, the Receiver performs an action. If the action is appropriate given
the state of the world, both the Sender and Receiver get a payoff of one; if the
action is inappropriate, the payoff is zero. Figure 7 shows the extensive-form
for a sender-receiver game with two states of the world, two signals, and two
actions.

(1,1)

(0,0)

(0,0)

(1,1)

(1,1)

(0,0)

(0,0)

(1,1)
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S2

σ1σ2

σ1σ2
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A2
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A2
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A2

Figure 7: A Lewis sender-receiver game with two states of the world, two signals,
and two actions.

If agents can play the sender-receiver game as both Sender or Receiver, then
the strategy they use must specify how they will act in either role. A sender-
receiver game with two states of the world, two signals, and two actions has

21It may even be the case that we need not worry about the specific method people use to
maximise. Smead (2008) uses a Moran process to model behaviour in the Centipede game and
finds that it, too, gives rise to populations in which people choose Pass in the first few stages of
the game.

22N -player versions of sender-receiver games exist as well. See Skyrms (2008) for a nice intro-
duction to these games, along with a discussion of some of the peculiarities that arise.
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sixteen possible strategies.23 Of these, only two have the property that they are
signalling systems according to Lewis’s definition.24 The two Lewis signalling
systems are:

1. Send σ1 in state S1, and σ2 in S2; do A1 upon receipt of σ1, and A2 upon
receipt of σ2.

2. Send σ2 in state S1, and σ1 in S2; do A1 upon receipt of σ2, and A2 upon
receipt of σ1.

There are a number of ways one could implement the Sender-Receiver game
in a model of social deliberation. Nature could select a randomly chosen state of
the world for all pairwise interactions in a given round. Alternatively, it could
be the case that, for each pairwise interaction, Nature selects a randomly chosen
state of the world. Or we could even consider how individuals would revise their
beliefs using the expected outcomes of their interactions with their neighbour. In
the following, I assume that people revise their beliefs using the expected value
of their interaction with their neighbour.

What happens when a population of Nash (or Bayesian) deliberators plays
the Sender-Receiver game? Let us consider, as before, the simplest possible social
network: k Nash (or Bayesian) deliberators situated on a ring, with the direction
of the edges such that each person plays the game once as Sender and once as
Receiver.25 As one might expect, quite often the population converges to one of
the two Lewisian signalling systems. But this does not always happen. If the ring
happens to have an even number of players (say six, for sake of argument), it can
happen that players 1, 3, and 5 may converge to one strategy in the signalling
game with players 2, 4, and 6 adopting another. How can this be rational?

In an environment where interactions are constrained by a social network,
the Lewis signalling systems are not the only signalling systems which allow
communication. Consider, for example, the following pair of strategies:

Me. When Sender, use: (S1, S2) 7→ (σ1,σ2).
When Receiver, use: (σ1,σ2) 7→ (A2,A1).

23There are four possible strategies to use as Sender: (S1, S2) 7→ (σ1,σ1), (S1, S2) 7→ (σ1,σ2),
(S1, S2) 7→ (σ2,σ1), or (S1, S2) 7→ (σ2,σ2). Likewise, there are four possible strategies to use as
Receiver: (σ1,σ2) 7→ (A1,A1), (σ1,σ2) 7→ (A1,A2), (σ1,σ2) 7→ (A2,A1), or (σ1,σ2) 7→ (A2,A2). Any
Sender strategy may be paired with any Receiver strategy, given sixteen possible strategies for
the game.

24Lewis’s definition of a signalling system is somewhat restrictive in that it excludes combi-
nations of strategies which may nevertheless be perfectly successful at communicating. We shall
see that both the Nash and Bayesian dynamics may converge to these nonstandard signalling
systems.

25As before I only consider the case where the entire population is composed of either Nash
deliberators or Bayesian deliberators; I do not consider heterogenous populations.

16



You. When Sender, use: (S1, S2) 7→ (σ2,σ1).
When Receiver, use: (σ1,σ2) 7→ (A1,A2).

Suppose that I am the Sender. In state S1 I send signal σ1, and you respond to that
signal by performing A1. Likewise, in state S2 I send signal σ2, and you perform
action A2. The first component of my strategy allows me to signal successfully
with the second component of yours. Now suppose that you are the Sender.
In state S1 you send signal σ2, and I respond to that signal by performing A1.
Likewise, in state S2 you send signal σ1, and I respond by performing action A2.
The first component of your strategy allows you to signal successfully with the
second component of mine. Yet the convention used when I am the Sender is the
opposite of the convention used when you are the Sender! This is the signalling
analogue of you speaking to me in German (and I listen in German), but I speak
in Russian (and you listen in Russian). When interactions are constrained via
a social network, additional signalling systems exist besides those identified by
Lewis.

There are three odd properties about these new signalling systems, though.
First, they require that the strategies be very carefully distributed across the pop-
ulation. Second, not every social network allows these new signalling systems
to be used if the socially optimal state of affairs is to be achieved. (There is no
way that the abovementioned strategies could be used on a ring containing seven
players, for example, while at the same time allowing agents to always commu-
nicate successfully.) Third, these new signalling systems cannot communicate
with members of their own kind. The Lewis signalling systems, on the other
hand, can.

Other odd deliberational outcomes exist with both the Nash and Bayesian
dynamics. Figure 8 illustrates one such outcome for the Nash dynamics after
the players have been deliberating for 20,000 iterations. Here, players 1, 2, and
3 have effectively converged to one of the nonstandard signalling systems dis-
cussed earlier.26 Players 6 through 11 have adopted one of the Lewisian signalling
systems. Consider, though, the probability distributions adopted by players 4
and 5, and 12 and 13. These four individuals exist between two regions of play-
ers who can communicate perfectly with each other. However, their probability

26By “effectively converged,” I mean that they have all assigned more than 99.5% probability
to one strategy. In response to those who are inclined to object that these results are uninfor-
mative since it may be the case that all individuals in the population converge to a pure Lewis
signalling system in the limit, I offer two simple remarks. First, that in the long run we are all
dead. Results establishing that a certain outcome holds in the limit are only of practical interest
if significant progress towards the limiting outcome can occur within a reasonable amount of
time. (A similar point was argued for in Vanderschraaf and Alexander (2005).) Second, given
this, the fact that socially inefficient states can persist for 20,000 iterations of the Nash dynamics
surely counts as a blow against the Nash dynamics as a mechanism for belief revision.
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Figure 8: The Nash dynamics may generate socially suboptimal outcomes in the
Sender-Receiver game (state after 20,000 iterations, index of caution of 25).

distributions include strategies which fail to differentiate between states of the
world, and hence are ineffective for communicating.

Consider agent 4, for example. His state of belief allocates probabilities over
strategies as follows27:

Strategy
Probability Sender Receiver
0.576843 {S1→ σ1, S2→ σ2} {σ1→A2,σ2→A1}
0.293552 {S1→ σ1, S2→ σ2} {σ1→A1,σ2→A2}
0.0648024 {S1→ σ1, S2→ σ2} {σ1→A1,σ2→A1}
0.0648024 {S1→ σ1, S2→ σ2} {σ1→A2,σ2→A2}

The strategy receiving the greatest weight is one of the nonstandard signalling
systems, and is the one compatible with player 3. The strategy receiving the sec-
ond greatest amount of weight is one of the Lewisian signalling systems, and is

27The probabilities listed do not sum to one simply because the remaining residual probability
is distributed over the other twelve strategies.
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the same Lewis signalling system as used by players 6 through 11. (Incidentally,
it is also the strategy assigned the greatest amount of probability by player 5.)
The two remaining strategies are ineffective ones for the Sender-Receiver game
because they fail to distinguish between signals when in the role of Receiver.
Similarly unusual outcomes (although with different probabilities) exist for the
Bayesian dynamics as well. Neither dynamics provides a good model for how a
population of agents might arrive at a socially optimal signalling system.

How does imitative learning fare at guiding the population to adopt one of
the Lewis signalling systems? Figure 9 illustrates the outcome of one simulation
using imitative learning on the lattice, where people interact with, and learn
from, their eight nearest neighbours. Within a very short period of time — six
iterations, in fact — the vast majority of the population has adopted one of the
two Lewis signalling systems. This always happens on the lattice provided that
the initial distribution of strategies contains sufficiently many of one of the two
signalling systems.

“Sufficiently many” need not be that large of a number. What matters most
is that a cluster of people following the same signalling system coincide. Once
a block of agents has settled upon a signalling system, imitative learning will
cause other agents to adopt that signalling system, causing it to spread, until the
expanding region either spreads to the entire lattice or it encounters a compet-
ing region following the other signalling system. If no agents use one of the two
signalling systems in the original state, the population can still manage to co-
ordinate on a signalling system if innovation introduces new strategies into the
population. The emergence of signalling systems on the lattice under imitative
learning thus has dynamics similar to that of the emergence of fairness in the
game of divide the dollar (Alexander and Skyrms, 1999)

On irregularly shaped networks, imitative learning can help move the popu-
lation towards adopting a signalling system, but it really needs the help of spon-
taneous innovation as well to succeed. The reason why is that irregular social
networks allow some agents to have more neighbours than others, and agents
with a lot of neighbours can earn high payoffs even if they use strategies which
aren’t signalling systems. The high payoffs received by an agent with a lot of
neighbours means that imitative learning will lead his neighbours to adopt his
strategy, even though it really isn’t very good for the Sender-Receiver game.

When spontaneous innovation occurs, these groups of poor communicators
who are supported by a single well-connected individual can be replaced by mu-
tants who employ a signalling system. The process is more heavily dependent
upon the appearance of innovative strategies at the right place, at the right time,
than on the lattice28 but, even so, random networks can converge to signalling

28The regularity of lattices means that signalling systems can spread rapidly once they get
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(a) Initial conditions (b) After 2 iterations.

(c) After 4 iterations. (d) After 6 iterations.

Figure 9: Imitation in the Sender-Receiver game leads to the evolution of regions
where players coordinate upon one of the two Lewisian signalling systems.
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Figure 10: Imitation on a random graph, with mutation.

systems in rather short order. Figure 10 illustrates the first six iterations of imi-
tative learning on a random graph containing 25 agents. (The mutation rate was
chosen so as to introduce approximately two innovative strategies into the pop-
ulation each iteration.) As can be seen, after six iterations the population does
not seem to be converging to a signalling system. Nevertheless, the population
of that simulation converged to one of the Lewis signalling systems within 50
iterations.

4. Conclusion.

There are many methods individuals might use to engage in social deliberation.
In this paper, we have considered three: a variant of the Nash-Brown-von Neu-
mann dynamics, a variant of Bayesian updating, and a form of imitative learning
known as “Imitate the Best”. When the results of these three methods are com-
pared in the Centipede game and Lewis Sender-Receiver games, the one which
agrees best with what actual people do is imitative learning. In the Centipede
game, only imitative learning converges to a distribution of actions in the Cen-
tipede game that tends toward the socially optimal outcome. (Both the Nash
and Bayesian dynamics tend towards the traditional game-theoretic solution.)
In Sender-Receiver games, only imitative learning, with innovation, is generally
compatible with the population arriving at socially optimal signalling systems.

established in a local cluster.
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(Both the Nash and Bayesian dynamics can cause some individuals to get stuck
using inefficient strategies.)

Although imitation is not the sole method used by people to engage in social
deliberation, and it may not work for all problems, it does provide a reasonably
effective way of balancing the competing aims of individual maximization with
social optimality. Aside from what we have seen here with the Centipede game
and a simple Sender-Receiver game, imitative learning can also support cooper-
ative behavior in the Prisoner’s Dilemma, trusting behavior in the Stag Hunt,
and fair division in divide-the-dollar (Alexander, 2007). If Gabriele Tarde was in-
correct in asserting that society is imitation, it nevertheless is true that imitation
supports many behaviours which are central to our social existence.

A. Definition of the Nash and Bayesian dynamics

Suppose that, as in section 1, we have a two-person noncooperative game. Let
~pRow(t ) = 〈p1, . . . , pn〉 denote the state of uncertainty of Row, and ~qCol(t ) =
〈q1, . . . , qn〉 denote the state of uncertainty for Column. Let EU

Row
(i , t ) denote

the expected utility of action i for Row at time t . The expected utility of the
status quo for Row at time t is defined as follows:

ESQ
Row

(t ) =
n
∑

i=1

pi EU
Row
(i , t ).

Given these definitions, we may define the covetability of action j for Row at
time t is:

Cov
Row
( j , t ) =max

�

0,EU
Row
(i , t )−ESQ

Row

(t )
�

.

Similar definitions can be made for Column. In the following, I shall omit the
explicit reference to either Row or Column.

The Nash dynamics states that an individual will modify his state of uncer-
tainty according to the rule

pi (t + 1) =
k · pi (t )+Cov(i , t )

k +
∑n

j=1 Cov( j , t )

where k > 0 is an “index of caution” which measure how quickly individuals
will adjust their probability distributions in a single revision.

The Bayesian dynamics takes the slightly different form:

pi (t + 1) = pi (t )+
1

k
· pi (t ) ·

EU(i , t )−ESQ(t )

ESQ(t )
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where, again, k > 0 provides an index of caution reflecting how rapidly the
distribution changes in a single revision. Skyrms (1990, pg. 36–38) explains the
connection between the above formula and Bayes’ theorem. Before applying
the Bayesian dynamics, one must first transform the payoff matrix so that the
lowest payoff is 0 and the greatest payoff is 1; without the transformation, the
result will not necessarily be a probability distribution.
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