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The replicator dynamics have been used to study the evolution of a pop-
ulation of rational agents playing the Nash bargaining game, where individuals’
“fitnesses” are determined by individuals’ success in playing the game. In these
models, a population whose initial conditions was randomly chosen from the space
of population proportions only converges to a state of fair division approximately
62% of the time, unless artificial correlations are introduced into the model. Spatial
models of the Nash bargaining game exhibit considerably more robust convergence
properties. These properties are considered at length, and a sufficient condition
for convergence to fair division is proved.

1. Introduction. In 1974, Nydegger and Owen conducted an experiment to
test the validity of the Nash axioms. Thirty pairs of subjects participated in
three rounds of bargaining, each successive round of bargaining imposing a
different (and increasingly complicated) condition upon the subjects. In all
rounds of bargaining, subjects played a variation of “divide the dollar”, the
simplest version of the general bargaining situation considered in Nash’s orig-
inal treatise on the subject[7]. Although Nydegger and Owen found subjects
deviating from one of the axioms under certain circumstances!, in the special
case where the two players were asked to divide a dollar under completely
symmetric circumstances, Nydegger and Owen found unanimous agreement
on the 50-50 split.

This result is not considered controversial. Nydegger and Owen con-
ducted this experiment primarily to establish a baseline for comparison for

!The results of the third round of bargaining suggest that subjects attempt interpersonal
comparisons of utility, leading them to violate Nash’s fifth axiom of the invariance under
linear transformations of utility.



later ones.? However, it is precisely the uncontroversial nature of the Ny-
degger and Owen result that I want to focus on in this paper. The question
may be put this way: why is the 50 50 split, under completely symmet-
ric circumstances, the only “natural” or “expected” solution to the division
problem?

Without further explanation, this question may seem silly. After all,
most reasonable moral theories include equal division under completely sym-
metric circumstances, if not as a fundamental principle, as an easily derived
consequence from fundamental principles. It is a consequence of Kant’s cat-
egorical imperative, Aristotle’s rule of distributive justice, and Rawls’ theory
of justice, to name but a few. Yet philosophers with certain naturalistic
inclinations might view with distaste the importation of the categorical im-
perative (or Aristotle’s rule, or the principles underwriting Rawls’ theory of
justice) to establish something as simple as equal division under completely
symmetric circumstances. We should not need to appeal to principles as
powerful as the categorical imperative to establish such a simple result. Ide-
ally one should be able to explain the perceived moral phenomenon through
nothing more than appeal to informed rational self-interest.

As Skyrms[10] observes, though, this task is more difficult than it first
appears. Two player’s claims are in an equilibrium in informed rational self-
interest when each player’s claim is optimal given the other player’s claim.
Le., neither player can do any better against the other by changing his or
her claim.? For the game considered by Nydegger and Owen, many equilbria
other than equal division exist. For example, the case where player one
receives $.66 and player two receives $.34 is another one, as is the case where
player one receives $.02 and player two receives $.98. How is the equilibrium
of equal split selected out of the many possible equilibrium?

Skyrms suggests we view the question of equilibrium selection within
an evolutionary game theoretic context. We suppose each individual has a
certain strategy (how much of the dollar they wish to keep) and interacts with
other players using that strategy. At the end of every generation, strategies

2The agreement of two players on the 50-50 distribution under completely symmetric
circumstances does not test all of the Nash axioms only feasibility, individual rational-
ity, Pareto optimality, and symmetry are required. Under these conditions, the Kalai-
Smordinsky axioms also lead to a 50-50 split.

3Also known as a Nash equilibrium, in honor of John Nash. A strict Nash equilibrum is
one where each player does strictly worse by changing his or her strategy. In the case of
“divide the dollar”, almost every equilibrium is a strict Nash equilibrium.



replicate with a certain probability determined by their level of success. More
successful strategies are used by more people, less successful strategies are
used by fewer. If it should turn out that the evolutionary dynamics almost
always takes a population from an initially random assignment of strategies
to a state where equal division dominates, then we would have a solution to
the problem of equilibrium selection. More importantly, though, we would
also have the beginnings of a naturalistic explanation for why people, under
completely symmetric circumstances, always agree on the equal split.

First, a minor confession: in the above I used the phrase “the evolu-
tionary dynamics”, implying that there is one and only one type of evolu-
tionary dynamics. This is false. The type of evolutionary dynamics one uses
usually depends upon how one models the population. If we believe that the
strategies individuals follow are “genetically” determined;* that reproduc-
tion occurs asexually; that individuals breed true; that the large size of the
population allows us to identify an agent’s individual fitness of an agent with
the expected fitness of an agent; and that the structure of the population
(through random interaction of the agents or various mixing forces) makes
any two members of the population equally likely to interact, we arrive at
the replicator dynamics of Taylor and Yonker[11]. Other dynamics arise if
we select a model using discrete agents, spatial constraints, and so on.

Using the replicator dynamics to model a population of individuals
playing “divide the dollar” with a stack of dimes, Skyrms obtained the results
for a series of 100,000 trials shown in table 1. Although fair division has

Polymorphism  Count
Fair division 62,209

46 27,469
3-7 8,801
2-8 1,483
1-9 38
0-10 0

Table 1: Convergence results for replicator dynamics—100,000 trials

a sizeable basin of attraction (roughly 62%), a significant fraction of the

41 use scare quotes here because one does not need assume that the strategies are geneti-
cally determined in order to obtain the replicator dynamics. The replicator dynamics apply
equally well for the model of cultural evolution I am considering here. However, I find the
language of biology the most convenient way to express the traditional assumptions by
which one obtains the replicator dynamics.



populations converged to one of the other Nash equilibria. As far as providing
an explanation for why people always opt for equal division in symmetric
circumstances, this attempt falls a bit short. It requires we postulate that
the initial state of the population (was not in the basin of attraction of any
other Nash equilibria. Consequently, it removes much of the normative force
of the rule. That is, it is not the case that one should always opt for equal
division in symmetric circumstances; rather, one should opt for equal division
in symmetric circumstances only because, given the particular evolutionary
path our society has followed, it is the best thing to do. If our society had
followed a different evolutionary path, we would be better off demanding
forty or sixty cents of the dollar.

We can recapture some of the normative force of this elementary prin-
ciple of distributive justice by showing that one should always opt for equal
division in symmetric circumstances, regardless of the initial state of the
world. In part, this problem can be reduced to eliminating all polymorphic
pitfalls other than fair division. If we can construct a model which always
converges to fair division, regardless of the initial state of the population,
then we have a plausible explanation for why people always opt for equal
division in completely symimetric circumstances.

The problem of selecting one equilibrium out of the many possible
ones has been given serious thought by game theorists. Peyton Young[13, 12]
showed that if we allow members of the population to experiment with new
strategies at random, and take the limit as the probability of someone ex-
periementing with a new strategy approaches zero, then the ratio of time
the population spends in equal division approaches one. Unfortunately, this
result means only that, in the long run, the population will spend most of its
time at fair division. If the population happens to get trapped in one of the
polymorphic pitfalls, we might have to wait an arbitrarily long time before
individual experimentation moves the population outside of that polymor-
phism. Given the rapid rate at which human populations have converged
upon the principle of equal division in completely symmetric circumstances,
this explanation does not seem satisfactory. Perhaps we should consider an
alternative approach.

2. Spatial bargaining games.

2.1. Definitions. Let P ={1,..., N } be a population of individuals. Let G
be a two-person noncooperative game with a strategy set S = { s, $1, ..., }-



If s; and s; are strategies held by players p and g, respectively, denote the
payoff to player p by G(s;, s;) and the payoff to player ¢ by G(s;,s;). Notice
that in doing so we are assuming the game to be represented by its normal
form description. This may not always be a correct assumption. Fictitious
play dynamics, allowing players to take previous moves into consideration
when deciding what to do for their current move, would be more naturally
modelled using the extensive form representation.

IT is a population structure if Il = (P, E) is a connected graph. The
requirement of connectivity simply prevents us from having two separate
populations models “inside” of a single model. (This would correspond to a
spatial variant of the patch models of Durrent and Levine[l].) The general
shape of the graph also determines the topology of the world, of which we
only distringuish between whether the world is bounded or unbounded. A
spatial model is bounded if the corresponding population structure has a
well-defined perimeter (e.g., E is a planar graph), and a spatial model is
unbounded if it is not bounded. Unbounded spatial models appear quite
frequently in the literature; simple examples use population structures based
a square lattice with the top and bottom connected, forming a cylinder, or
with both pairs of opposite sides connected, forming a torus.

Although unbounded models do not model spatial populations accu-
rately, there are advantages to using them. The absence of a boundary often
means all individuals have the same number of neighbors, which simplifies
the analytic treatment. Moreover, this also means one does not have to worry
about edge effects affecting the behavior of the model. On a more pragmatic
level, the absence of a boundary often simplifies coding since one does not
need to consider separate cases for each stage of the model (individuals on
the boundary and individuals in the interior). Each of these advantages may
also be viewed as a disadvantage. In real life, everyone does not have the
same number of neighbors, and edge effects do have a proper place in an-
alyzing some phenomena (people do live on the edge of town). Therefore,
all models considered in this paper use bounded population structures in an
attempt to increase the level of accuracy of the model.

The neighborhood of a player p, denoted N(p), is the set of all players
q such that (p,q) € E. In a single round of play, a given player p interacts
with every player in his interaction neighborhood N;(p) and updates his
strategy at the end of each generation by comparing his success level with
that of every player in his update neighborhood N, (p). I distinguish between
the interaction and update neighborhoods as there is no a priori reason
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Figure 1: Three common neighborhoods defined on a square lattice.

to assume that these neighborhoods are equal. However, I also follow the
majority of papers in this literature by assuming N;(p) = N,(p), which I
denote by N(p).

Commonly studied neighborhood types when II has the form of a
rectangular lattice are listed in figure 1. These diagrams specify directional
offsets identifying the neighbors of a player (identified in the diagram by
‘e’). Since the models of this paper are bounded, players on the boundary
have fewer neighbors than those in the interior. In general, the model of this
paper allows the neighborhoods to be any arbitrary subset of the Moore (24)
neighborhood.

2.2. Dynamics. Let o(p) be the score of player p € P at the end of generation
t, and denote the strategy held by a player p € P at the end of generation ¢
by &(p). The score of player p is defined as:

olp) = D G&lp).&(a)).

q€N(p)

This assumes that players do not make mistakes during interactions.

In this paper we allow for three different update rules, each rule having
a certain degree of plausibility, and attempt to trace their affect on the limit
form of the model. The general question of how one’s choice of the update
rule affects the limit form of the model remains an open and difficult problem.

Imitate the best neighbor.. This is the most common update rule in the
spatial modeling literate (see Nowak and May|8, 9], Lindgren and Nordahl[6],
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Figure 2: The possibility of ties among neighbors when updating (subscripts
indicate the score).

Huberman and Glance[4], and Epstein[2].) Each player p looks at her neigh-
bors and mimics the strategy of the neighbor who did the best, where “best”
means “earned the highest score.” As figure 2 shows, though, ties can occur
between several players in the neighborhood of p; an additional rule needs
to be given which, in such circumstances, selects a unique strategy to adopt.
(In all cases it is assumed that p does not change her strategy unless one
neighbor did strictly better than her.) Formally, let

My(p) = {&(q) : for all 7 € N(p), 0141(q) > 0441(7) }

That is, M;(p) is the set of all maximally scoring strategies held by players
in the neighborhood of p after the most recent round of interactions. Then,

&(p) if 0411(p) > 0441(q) for each player g € N(p).
Ea(p) = { &(9) if ¢ € N(p) and 0141(q) > 0141(p) and 0¢11(q) > o41(r)
forall € N(p)\ {q}
rand(M,(p)) otherwise

where “rand(Q)” means to randomly choose a strategy from the set Q.

The model of this paper assumes that the number of players in N(p)
who follow a given maximal strategy s affects the likelihood that p will choose
to adopt s. This seems reasonable since, if several neighbors of p follow
s and earn the maximal score of N(p), it would be foolish of p to ignore
this information. The simplest way to take this information into account
would be for p to let the probability of choosing a maximal strategy s be
a linear function of the number of people in her neighborhood who follow
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that strategy. (More complicated functions could be used to model risk-
averse players who require a certain number of neighbors to follow a maximal
strategy before they consider adopting it.) For simplicity, I assume that if
the number of players in N(p) using maximal strategy s is n,, then the
probability of p choosing to adopt s is W

Imitate with probability proportional to success.. Here, as before,
each player p compares her score with those of her neighbors, modifying her
strategy only if at least one neighbor did strictly better than her. However,
instead of ignoring those players who did better than p but not well enough
to include their strategy in the set of maximal strategies, this update rule
assigns to every neighbor who did better than p a nonzero probability that
p will adopt their strategy. Formally,

Eror(p) = &(p) If op1(p) > 0441(q) for each player ¢ € N(p),
t = ) - )
* &(q)  With probability Pr(p < q), if 0441(q) > 0441(p)-

where “Pr(p < ¢)” denotes the probability of p adopting ¢’s strategy. Ex-
actly how probable it is that p will adopt ¢’s strategy (where ¢ is a neighbor
of p) depends on how players treat the relative success of gq.

The relative success of ¢ is simply the difference 0;(q) — 04(p) between
the two scores. The greater this value, the more likely it is that p will adopt
q’s strategy. As before, there are a number of ways p might use this informa-
tion when making her decision, the simplest being to let the probability of
adopting ¢’s strategy vary proportionally with the magnitude of 04(q) —o(p).
We define this probability as follows:

0111(q) — 011(p)

Z or1(r) — Ut+1(p).

TEN(p)
ot+1(r)>0t41(p)

Pr(p —q) =

Imitate best expected payoff.. Under these dynamics, players calculate
the expected payoff of each strategy in their neighborhood and select the
one with the highest value. As with imitate the best neighbor, though, the
possibility of ties exists and so some kind of tie-breaking rule needs to be
given. Let S,(i) = {r € N(p): &(r) =i} denote the set of all players in



N(p) who follow the strategy i. Formally, we have

&(p) if 0141(p) > 0141(q) for all ¢ € N(p),
&(q) if for all uNe NV ( p) ﬁlﬁg %é( (1)
DR T Beon

Et(Q)=£t(7‘) &i(u)=€4(r)
rand(M,(p)) otherwise.

where M, (p) is the set of all strategies in the neighborhood of p which had the
maximal average score of N(p). We assume the same tie-breaking method as
used for imitate the best neighbor, which increases the probability of selecting
a strategy from the set M;(p) based on the number of players around p who
follow it.

2.3. Synchronicity. We assume all updating occurs synchronously. There
has been considerable debate over the appropriateness of using synchronous
dynamics. The original papers of Nowak and Mayl[8, 9] on the spatialized
prisoner’s dilemma used synchronous dynamics. However, this assumption
was later criticized by Huberman and Glance[4] on the grounds that syn-
chronous dynamics lead to stable equilibrium states which did not appear
when asynchronous dynamics were used. Since then, asynchronous dynam-
ics have typically been preferred, as the more recent papers of Hegselman|3]
and Epstein[2] show.

However, I am not convinced that asynchronous dynamics necessar-
ily provide a more accurate model. Most implementations of asynchronous
dynamics construct a list of all agents in the model and walk through the
list, one agent at a time, performing the required calculation or computation.
At the end of each generation, the list is permuted, modifying the update
order for the next generation. This type of dynamics does not seem any more
“realistic” than synchronous dynamics; although agents do not update their
strategies in the rigid lock-step manner suggested by synchronous dynamics,
neither do they update their strategies in this carefully orchestrated manner,
where only one person updates at any given point in time.

If we really want a more realistic way of handling the update dynam-
ics, we need to strike a middle ground between these two extremes. One
possibility would be to partition the set of agents and place each partition
into a list—updating all the agents belonging to the same partition syn-
chronously, but update only one partition at a time (using the list ordering).
This method captures the fact that many agents in a population do update
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simultaneously (or nearly simultaneously), without requiring that everyone
in the population does. However, I leave the examination of that dynamic
for another paper.

3. Convergence Results.

3.1. Dependence on initial spatial configuration. Spatial models, unlike mod-
els using replicator-like dynamics, allow for wide variation in the initial condi-
tions even when the initial population frequencies are held constant. Consider
a world initialized according to the vector:

(1,.1,.1,.1,.1,.1,.1,.1,.1,.05,.05)

(this vector has eleven elements since players are permitted to demand noth-
ing). In this world, exactly 1,000 of the 10,000 members, begin by following
the strategy of demand nothing.® Since players are assigned unique and dis-
tinguishable spatial positions, there are (110000000) possible ways of assigning the
strategy demand 0 to population members. For each of these assignments,

there are (9000) ways of assigning the strategy demand 1 to players. All in

1000
all, there are
(10000) (9000) <1000) <500> ~ 1057
1000 / \1000/ "~~~ \ 500 / \ 500
distinguishable ways of assigning strategies to players which conform to the
initial vector above.

Given this, one might wonder to what extent the initial spatial distri-
bution of strategies affects the final convergent state (if one exists). One can
easily construct cases which exhibit extreme sensitivity to the initial spatial
distribution. As a trivial example, consider a world containing 9991 players
who demand 9, eight players who demand 1, and exactly one player who

demands 5. Assume this model uses the Moore (8) neighborhood with im-
itate the best neighbor dynamics. A model initialized in accordance with

5In practice, the model used in this paper does not attempt to match the population
proportion ezactly since many vectors chosen at random from the space of initial popula-
tion proportions do not correspond to actually attainable states in a discrete world. For
example, the vector whose first coordinate is .101010101 is an admissible element in the
space of initial population proportions (provided the sum of the coordinates equals 1),
yet it fails to correspond to an attainable state in a discrete world with 10,000 members.
(Notice, though, that it is attainable in a larger discrete world.)
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this initial population vector exhibits sensitive dependence on initial condi-
tions: most of the approximately 10?!7 strategy assignments will lead to a
unusual polymorphic state containing the strategies demand 1, demand 5,
and demand 9. In the vast majority of cases, the demand 5 strategy will
not disappear as it will be surrounded by players who demand 9; since the
strategy of demand 9 is incompatible with itself, and with the strategy of
demand 5, neither the player following demand 5 nor his neighbors will re-
ceive nonzero scores. Consequently, the player following demand 5 has no
incentive to switch strategies and will not; a similar argument applies for
the players following demand 9. Other cases, though fewer in number, lead
to the elimination of fair division, leaving the world in a 1-9 polymorphism,
which is a stable polymorphism of the replicator dynamics. But in both of
these cases, elimination of fair division and the three-strategy polymorphism,
the world will settle into a stable cycle of length two. Now consider the case
where all eight demand 1 strategies surround the sole demand 5. In this case,
the demand 5 strategy will spread to all of its surrounding neighbors at the
end of the first generation, leaving a 3 x 3 block of demand 5 players in a
world consisting solely of demand 9. From this point, the strategy of fair
division will spread to the entire world as none of the demand 9 strategies
will ever earn a nonzero score, whereas all of the demand 5 strategies will.

The above example strikingly demonstrates the sensitive dependence
on initial conditions often associated with spatial models. Given the extraor-
dinarily large number of possible spatial configurations for a single vector,
one might wonder whether this would make it impossible for us to say any-
thing about the general convergence properties of such models; if, given a
particular vector from the space of initial population proportions, the final
state that world converges to depends entirely upon the spatial distribution
of strategies, we cannot say much at all about the general convergence prop-
erties of the model. There are simply too many initial spatial distributions
to consider. At best, one could say that when the model is started in state
X it converges to final state Y and that when the model is started in state
Xy it also converges to final state Y...Does the sensitive dependence on
initial conditions noted above prevent us from legitimately drawing infer-
ences about general convergence properties of the model from the outcomes
of sample trials?

6This polymorphism is unusual in that it is not a stable polymorphism of the replicator
dynamics.
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I do not think so. We must recognize that the question of whether
models exhibit sensitive dependence on initial conditions (as described above)
can be separated from the question of how widespread such behavior is.
If the model exhibits sensitive dependence on initial conditions very infre-
quently, we may draw inferences about the general convergence properties of
the model by considering the outcome of sample trials. We may determine
the extent to which the model exhibits sensitive dependence on initial condi-
tions by considering the outcomes of repeated trials where we hold the initial
vector of population proportions constant for all trials.

To do this, one hundred vectors from the space of population propor-
tions were randomly selected. Each vector specified the initial frequencies of
strategies in the population for one hundred trials; however, each trial used
a different spatial distribution of strategies among members of the popula-
tion. Of the 100 vectors, 97 showed no disagreement on their final convergent
state. The three initial vectors which did have disagreement had remarkably
little. Two vectors converged to a state of fair division 91 and 96 times out
of a hundred (the remaining trials converged to the 4-6 polymorphism); one
vector converged to the 4—6 polymorphism 99 times out of a hundred. The
remaining trial for the last vector did not converge to any of the “standard”
polymorphisms of the replicator dyanamics: this last trial converged to a sta-
ble cycle of length two containing the strategies demand 3, demand 4, and
demand 6! These polymorphisms, though rare, can exist in spatial models.

The three vectors showing sensitivity to the spatial distribution of
strategies are listed in table 2. Obviously, the first vector was the one which
led to 4-6 polymorphisms (almost) exclusively. The second and third vectors
allowed the spatial distribution of strategies to influence the final convergent
state because, with only .17% or .09% of the players following demand 5,
unlucky positioning of this strategy could lead to its elimination in the first
few generations. Given the extremely few number of players assigned the
strategy of demand 5, I find it surprising that worlds initialized according to
these initial frequencies agreed so often on their final convergent state. This
shows, in part, that the initial spatial distribution on the final convergent
state becomes important only when the frequency of certain strategies be-
comes extremely low (i.e., when the initial vector lies close to the boundary
of the simplex space of initial population proportions).

As a further check, twelve extended series of 10,000 trials each were
performed using the initial state vectors v; = (sf,...,s%), for i =0,...,11.
(These runs were performed exactly like the previous ones, the only exception
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dem. 0 dem.1 dem.2 dem.3 dem.4 dem.5 dem.6 dem.7 dem.8 dem.9 dem. 10

0.0294 0.0201 0.3676 0.0354 0.0713 0.0000 0.1687 0.1364 0.0454 0.0297  0.0960
0.1123  0.0159 0.0424 0.0836 0.0214 0.0017 0.3365 0.0273 0.0964 0.0786  0.1839
0.1396 0.3670 0.1396 0.0871 0.0662 0.0009 0.0842 0.0709 0.0270 0.0136  0.0040

Table 2: Three vectors showing sensitivity to the spatial distribution of
strategies.

being that instead of checking only 100 different distributions for each initial
frequency, we examined 10,000.) The initial conditions were as follows, for
1=0,...,10:

i~ 0.01  otherwise

. {0.099 if i £ j

when i = 11, s) = s = ... = sY,. Unlike the previous experiments, here

we found that each series always converged to the same polymorphism. We
conclude, then, that although the initial spatial distribution of strategies can
have an effect on the final state of convergence, the relatively small effect
allows the use of Monte Carlo methods to determine the size of the basins of
attraction for various polymorphisms.

3.2. Dependence upon the neighborhood and underlying dynamics. Table 3
summarizes the final convergent state of the world for several different com-
binations of neighborhoods and dynamics. The neighborhoods examined
include the three most common in the literature (von Neumann, Moore (8),
and Moore (24)), as well as the three nonstandard types displayed in figure 3.
The row identified as “R(8)” used a different method: at the start of every
generation, each player p randomly selects eight players from the world to
serve as p’s neighborhood for interaction and updating. Thus, the model of
row R(8) serves as an intermediary between the fixed neighborhood structure
of the other models and the replicator dynamics.
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(a) Type 1 (b) Type 2 (c) Type 3

Figure 3: Three nonstandard neighborhoods used in table 3

Polymorphism

Nbhd Dynamics 010 19 28 37 46 5 Other
Mimic with proportion relative to success 0 0 0 0 29 9970 1
VN Mimic best neighbor 0 0 0 0 26 9966 8
Imitate best average strategy 0 0 0 0 13 9984 3
Mimic with proportion relative to success 0 0 0 0 26 9973 1
M(8)  Mimic best neighbor 0 0 0 0 26 9908 66
Imitate best average strategy 0 0 0 0 24 9970 6
Mimic with proportion relative to success 0 0 0 8 110 9879 3
M(24) Mimic best neighbor 0 0 0 21 220 9721 38
Imitate best average strategy 0 0 0 0 62 9934 4
Mimic with proportion relative to success 0 0 57 556 2418 6964 5
R(8)  Mimic best neighbor 0 0 54 550 2560 6833 3
Imitate best average strategy 0 0 0 1 1523 8439 37

Mimic with proportion relative to success
Type 1  Mimic best neighbor 0 0 0 0 43 9868 89
Imitate best average strategy

Mimic with proportion relative to success

Type 2 Mimic best neighbor 0 0 0 3 62 9933 2
Imitate best average strategy 0 0 0 0 28 9924 48
Mimic with proportion relative to success

Type 3 Mimic best neighbor 0 0 0 3 62 9933 2
Imitate best average strategy 0 0 0 0 32 9965 3

Table 3: Convergence results based on neighborhood and dynamic.

In general, mean times to convergence are quite rapid. Models us-
ing the Moore (8) neighborhood usually converged within sixteen genera-
tions to fair division. This is a considerable improvement over the results of
Skyrms[10], and a significant improvement of that of Kandori, Mailaith, and
Rob[5], whose stochastically stable equilibrium only selects the equilibrium of
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fair division in the limit. As one might expect, the larger Moore (24) neigh-
borhood leads to faster convergence times because the radius of influence of
any given single player has increased.

Population composition

Nbhd  Dynamics 0-10 19 28 37 46 fair
Mimic with proportion relative to success 254 239
VN Mimic best neighbor - - - - 22.7  26.3
Imitate best average strategy - - - - 32.2 239
Mimic with proportion relative to success - - - - 179 164
M(8)  Mimic best neighbor - - - - 280 154
Imitate best average strategy — - — - 172 14.6

Mimic with proportion relative to success
M(24) Mimic best neighbor - - - 323 228 1238
Imitate best average strategy - - - - 18.7 10.6
Mimic with proportion relative to success — - 384 248 135 6.2

R(8)  Mimic best neighbor - - 155 139 85 45
Imitate best average strategy - - - 28.0 16.1 5.37

Mimic with proportion relative to success
Type 1 Mimic best neighbor - - - 24.0 10.7 12.69
Imitate best average strategy

Mimic with proportion relative to success
Type 2 Mimic best neighbor 16.3 15.3
Imitate best average strategy

Mimic with proportion relative to success
Type 3 Mimic best neighbor
Imitate best average strategy

Table 4: Mean convergence times

Figures 4, 5, and 6 illustrate the evolutionary path followed by worlds
using three different neighborhoods. In these three figures, the initial condi-
tions set all strategies equally likely and had players update their strategies
using imitate the best neighbor dynamics. In the first two worlds, the strat-
egy of fair division emerges from the initial random conditions even without
any means to globally coordinate such an outcome. The third figure il-
lustrates the effect of a degenerate (one-person) neighborhood in which all
players use only their northern neighbor for interaction and updating.”

"Empirical tests suggest that the minimal neighborhood allowing fair division to success-
fully emerge in almost all initial conditions is the von Neumann neighborhood. The next
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(c) Gen. 4

(d) Gen. 10

Figure 4: Evolution under neighborhoods of type 1

likely candidate, a neighborhood containing only the N, SE, and SW neighbors, often
leaves small sections following the 4-6 polymorphism along the perimeter. This effect
would not appear in models with periodic boundary conditions.

16



(d) Gen. 6

Figure 5: Evolution under type 2 neighborhoods
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(d) Gen. 100

Figure 6: Evolution under degenerate (one person) neighborhoods

3.3. Dependence upon cake size. In Evolution of the Social Contract, Skyrms
reported an interesting relationship between granularity of the good and
the distribution of the resulting polymorphism. If we assume that players
divide a cake consisting of ten slices, we find that fair division takes over the
population roughly 62% of the time with some percentage of the population
falling into one of the 1 9 or 2 8 polymorphic traps. However, increasing the
total number of pieces the cake is sliced into leads to an increase in the total
number of populations that will evolve into something “near” fair division.
In particular, Skyrms found that a cake divided into 200 pieces went to fair
division £ 3 pieces approximately 94.1% of the time; all trials went to fair
division 4+ 11 pieces.

Since most populations evolving under spatial constraints lead to a
pure state of fair division already, one natural question inverts the one con-
sidered by Skyrms: how coarse can we slice the cake while stilll getting
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fair division? Table 5 lists the results as the cake size varies from ten to
two pieces, for each of the three dynamics considered, under the Moore (8)
neighborhood.

4. Discussion. This paper began with a summary of Nydegger and Owen'’s
findings on bargaining behavior in human subjects, noting that the behavior
of the subjects was—though not inconsistent with—not entirely explicable
by traditional game theory. The overwhelming preference for people to pre-
fer equal division under completely symmetric circumstances suggests that
people acted in accordance with a norm which strongly regulates individ-
ual behavior. If so, the etiological question of where this norm came from
arises. Although traditional moral theories purport to offer explanations of
such norms these explanations do not usually mesh well with naturalistic
methods in philosophy.
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Polymorphism

Cake size Dynamics 0-10 19 28 37 46 5  Other

Mimic best neighbor 0 0 0 0 2 998 0

10 Imitate best average strategy 0 0 0 0 2 998 0
Imitate using relative success 0 0 0 0 3 997 0
Mimic best neighbor 0 0 0 0 5100 99511

9 Imitate best average strategy 0 0 0 0 1* 0 99912
Imitate using relative success 0 0 0 0 17 0 98313
Mimic best neighbor 0 0 0 0 999! 0 11

8 Imitate best average strategy 0 0 0 0 998* 0 23
Imitate using relative success 0 0 0 0 1000* 0O 0
Mimic best neighbor 0 0 0 3 0 0 99714

7 Imitate best average strategy 0 0 0 3 0 0 99715
Imitate using relative success 0 0 0 4 0 0 99616
Mimic best neighbor 0 0 0 998* 0 0 2%

6 Imitate best average strategy 0 0 0 1000* 0 0 0
Imitate using relative success 0 0 0 995* 0 0 5%
Mimic best neighbor 0 0 1 0 0 0 99917

5 Imitate best average strategy 0 0 1 0 0 0 99918
Imitate using relative success 0 0 2 0 0 0 99819
Mimic best neighbor 0 0 1000* 0 0 0 0

4 Imitate best average strategy 0 0 999* 0 0 0 16
Imitate using relative success 0 0 997* 0 0 0 37
Mimic best neighbor 0 1 0 0 0 0 99920

3 Imitate best average strategy 0 0 0 0 0 0 10002t
Imitate using relative success 0 0 0 0 0 0 100022
Mimic best neighbor 0 997* 0 0 0 0 38

2 Imitate best average strategy 0 1000* O 0 0 0 0
Imitate using relative success 0 998* 0 0 0 0 29

LOf these, 973 were pure states of demand 4. 2A 3 5 polymorphism, (3609,6391). S3Two 3 5
polymorphisms: (5112,4888), (5196,4804). “Two 2-4 polymorphisms: (3736,6264), (3813,6187).
5Five 24 polymorphisms: (3273,6727), (3484, 6516), (3380,6620), (3476,6524), (3589,6411). SA 1-3
polymorphism, (2563,7437). "Three 1-3 polymorphisms: (2147, 7853), (2233,7767), (2135,7865). ®In
all three worlds, the strategy of demand 1 went extinct early on, leaving the population in an unstable
equilibrium of (1,0,9728, 34, 34,36, 1,90,28,0,48), (22,0,5682,129,571, 884, 556,430, 960, 128, 638),
and (69,0,5771,1646, 321, 86, 187, 626,844, 115, 335). 9Both worlds contain unstable equilib-
rium in which all strategies are present: (4,7,5241, 212,90, 195, 280, 495, 2387, 572,517) and
(2,11, 2440, 523, 646, 988, 702, 1831, 105, 1040, 1712). 10 Four of these states contained only de-
mand 4. '! One 3 6 polymorphism, one 3 5 polymorphism, with the rest being 4 5 polymorphisms.
12 Three 3-6 polymorphisms, the rest 4-5 polymorphisms. 13 Three 3-6 polymorphisms, the rest 4-5
polymorphisms. 14 One 2-5 polymorphism, one 2-4-5 polymorphism, the rest 3-4 polymorphisms.
15 Five 2-5 polymorphisms, the rest 3-4 polymorphisms. 6 Two 2-5 polymorphisms, the rest 3-4
polymorphisms. 7 Two 1 3 4 polymorphisms, the rest 2 3 polymorphisms. '® One 1 3 4 polymor-
phism, the rest 2-3 polymorphisms. 9 All 2-3 polymorphisms. 2° One world containing the unstable
equilibrium (15, 3,108, 4220, 254, 146, 525, 855, 2335, 1520, 19), the rest 1-2 polymorphisms. 21 One
world containing the unstable equilibrium (0,0, 1074,1070,1011,1111,1125,1083,1110,1175,1241),
the rest 1-2 polymorphisms. 22 Three unstable equilbriums of the following form:
(6,0,8764,9,10, 806, 60, 95,116, 53, 81), (86,0,2958, 1357, 648, 2611, 263, 1159, 618, 81, 219), and
(10,10, 129, 1650, 4478, 4, 289, 253, 964, 1080, 1133), the rest 1-2 polymorphisms. *All states contain only
the strategy making the lowest demand of the pair.

Table 5: Convergence regjlts for a shrinking cake



Skyrms|[10] explores an alternative approach to answering the etiologi-
cal question using methods from evolutionary game theory. However, he uses
the replicator dynamics as his evolutionary model, which makes assumptions
of dubious validity for human populations (especially for human populations
of the size when our moral norms were first forming). Moreover, Skyrms’
models do not predict that a population of players engaged in the Nash bar-
gaining game will always (or almost always) converge to fair division: the
basin of attraction for fair division comprises only about 62% of the popula-
tion. Skyrms found that the sizes of the basin of attraction for fair division
could be significantly improved by introducing a small degree of correlation
into the population, but justifying this correlation requires complicating the
underlying story.

Many of these concerns with Skyrms’ original model disappear if we
consider a spatialized version of the Nash bargaining game. This model
drops the assumption of the replicator dynamics that the population is es-
sentially infinite and that any two players are equally likely to interact. In
this setting, randomly initialized populations converge almost always to fair
division. These convergence results persist even if we shrink the size of the
cake. Although randomly initialized populations do not always converge to
fair division, introducing a small amount of mutation virtually guarantees
that a population will converge to fair division within a reasonable amount
of time.® Figure 7 illustrates how a pure 4-6 polymorphism may be taken
over by fair division in the presence of a little mutation.

Figure 7: Emergence of fair division out of a 4-6 polymorphism due to mu-
tation

80ne, of course, needs to adapt the definition of “converge” accordingly to allow a pop-
ulation to converge to a state of fair division even when € of the players follow another
strategy.
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The amount of time required to move a population out of a poly-
morphic pitfall to a state where everyone (or almost everyone) follows fair
division depends on the frequency of mutations p. Inspection of figure 7 will
reveal that the key step in the emergence of fair division is the introduction of
the demand 5 strategy into a site surrounded by sufficiently many compatible
strategies. If p is large, we will not have to wait very long for such a mutation
to occur. If p is small (or if there are not many sites following compatible
strategies), then one will obviously have to wait longer. In comparison with
the time required for the model of Kandori, Mailaith, and Rob to return to
fair division if it gets trapped in a polymorphic pitfall, the wait in this case
seems hardly significant: the run portrayed in figure 7, which had g = .0001,
took just over one hundred generations for the critical mutation to occur.

Appendix A contains a proof of the claim that, in any competition
between fair division and any other polymorphism, where the region occupied
by fair division is of sufficient size and players update using mimic best
neighbor dynamics, the population will converge to a state of fair division.
Does this proof show that human populations will always converge to a state
where people make equal demands in completely symmetric circumstances?
Clearly not; spatial models, like the replicator dynamics, abstract away many
important features of real communities. However, spatial models may be a
closer approximation to the actual situation than the replicator dynamics. If
so, the dynamics of the spatial Nash bargaining game moves us closer to a
naturalistic explanation of the norm of fair division.

A. Analysis. Let S = {0,1,...,10} be the set of strategies. Then IT C S is
a polymorphic pair iff Il = {5} or Il = {s,c¢} where s+ c=g and ¢ < s
(where g is the total amount of good available). (We often refer to s as the
“greedy” strategy and c as the “modest” strategy.)

Let P be an infinite population of players with the population struc-
ture of an infinite square lattice. (We will often denote a given player p € P,
located at (z,y), by ps,,.) A strategy distribution for the population P at time
t is a function & : P — S. A frontier competition is strategy distribution
f+ P — S such that there exist two polymorphic pairs II; and Il; and some
integer ¢ such that for every p;;, € P, if j < i we have f(p;x) € II; and
f(p;jx) € 1y otherwise.

Let & be a strategy distribution for the population P, where the popu-
lation structure is that of a square lattice, and let f be a frontier competition.
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We say that the frontier competition f is embedded in the strateqy distribu-
tion & (or that £ has an embedded frontier competition) if there exist integers
v and 7, ¢ < j such that for all ps; € P:

LIfk<iork2>j, &pri) = f(Pry);
2. Ifi < k < jand &(px,y) € o, then E(pry) = f(pra)-
3. Otherwise, &(px,;) € 11;.

(Notice that every frontier competition has an embedded frontier competi-
tion.) According to this definition, saying that the strategy distribution &
has an embedded frontier competition f between fair division and the c.s.s.
IT is equivalent to saying that & may be constructed from f by changing the
strategy assignments of a set of players whose z-coordinates lie between ¢
and j to demand 5.

Lemma 1. Let & be a strategy distribution for the population P at time ¢,
and let f; be a frontier competition between IT = {5} and the polymorphic
pair IT" = { s, ¢ } embedded in &. Let i+1 be the z-coordinate of the leftmost
member of IT" in f;. If the z-coordinate of the leftmost member of TI" in f; 1
is £, then the x-coordinate of the leftmost member of 11" in &, is at least /.

(This lemma says that we can predict certain qualitative features of
the evolution of the strategy distribution & by considering the evolution of
the embedded frontier competition, if there is one.)

Proof. Since f; is a frontier competition, player p;; follows strategy 5. Let
S be the score of player p;; computed according to the strategy distribution
&:. and let S’ be the score of player p;; computed according to f;. We claim
that S’ < S.

According to the equivalent formulation of the definition of a frontier
competition, & differs from f; only in the assignment of strategies to a set
of players whose x-coordinates lie between i and j, for some integer j. If
none of these players lie within the Moore neighborhood of p;;, then S’ = S.
But suppose that some of these players lie within the Moore neighborhood
of pi. Denote the set of these players by {q1,...,¢, }. If g€ {q1,....qn}
had a strategy compatible with p;; in f;, changing ¢’s strategy to demand 5
still leaves ¢ with a strategy compatible with p;; and, consequently, will not
affect the score of p;.. However, if ¢’s strategy was incompatible with p;,
changing it to demand 5 will increase p;;.’s score by 5. Consequently, S’ < S.
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Now suppose that p; did not change her strategy from demand 5
to a strategy in the c.s.s. 1’ at the end of generation ¢ when we consider
the evolution of the frontier competition f;. We claim that p;, will not
change her strategy in the evolution of the strategy distribution &. Let
g € {r:ris aneighbor of p;, }. We know that ¢’s score was insufficient to
make p;r replace her strategy at the end of generation ¢ when we consider
the evolution of the frontier competition f;. We claim that the score of ¢,
when computed using the strategy distribution &, cannot be any higher than
the score computed using the strategy distribution f;, unless ¢’s strategy is
demand 5 (in which case, even if ¢ earns a higher score under & than in f;
it does not matter as it will not cause p;; to change strategies). One minor
complication in this argument is that there is a possibility that ¢’s strategy
is different in & than in f;. Thus, we need to consider cases on ¢’s strategy.

Suppose that &(q) # fi(q). Given the definition of an embedded
frontier competition, it follows that ¢’s strategy must be demand 5. The
claim follows trivially.

Suppose that &(q) = fi(q). Let r € {t:tis aneighbor of ¢}. If
fi(r) = &(r), then the interaction with r contributes the same amount to ¢’s
score regardless of whether we consider the evolution using strategy distri-
bution f; or &. So suppose that fi(r) # &(r). According to the definition of
an embedded frontier competition, if f;(r) # &(r), it must be the case that
&(r) = 5. If ¢ has the strategy of demand ¢, the fact that r’s strategy is
different in the distribution & from what it was in the distribution f; cannot
affect ¢’s score since r’s new strategy (demand 5) is still compatible with 7’s
strategy. If ¢ has the strategy demand s, the interaction with r under the
distribution & will result in a lower score than under the distribution f; if
fi(r) = ¢; in the other two cases ¢’s score under & will be the same as under
fi- If ¢’s strategy is demand 5, then her score will increase if r is assigned
an incompatible strategy in f; and will remain the same if r is assigned a
compatible strategy in f;. Thus, g can only earn a higher score under & than
under f; if ¢’s strategy is demand 5.

Now, we know that p;’s score under &; is greater than or equal to p;;’s
score under f;. Additionally, none of the neighbors of p;; can earn a higher
score under & than f; unless they follow the strategy of demand 5. Given
these conditions, then, it follows that p; will not switch strategies under &
if pi. did not switch strategies under f;.

However, we can say more than this: let ¢ be the z-coordinate of the
leftmost member of ITI' under f;;1. It follows that the leftmost member of I’
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under & must have an z-coordinate of at least /. To see why, suppose not.
Le., suppose that the leftmost member of I’ under & has an z-coordinate
less than or equal to £. Let p denote this player. Notice that f;,1(p) = 5 and
ir1(p) # 5.

Although p followed the strategy of demand 5 at the end of generation
t, it is not guaranteed that p followed that strategy at the beginning of
generation t. So we need to consider cases. Suppose that fi(p) = 5. The
reader may check that, according to the previous argument, in this case p’s
score cannot be lower under & than under f;. Since the only players who
earn higher scores under & than under f; are players who follow the strategy
of demand 5, it is impossible for &.,1(p) # 5 if fi11(p) = 5.

Now suppose that fi(p) # 5. Since fi11(p) = 5, it must be the case
that p adopts the strategy of demand 5 at the end of generation ¢ from some
other player q. However, ¢’s score cannot be lower under & than under f;.
Since no player with a strategy belonging to the polymorphic pair II" earns
a higher score under & than under f;, it is impossible for p to adopt the
strategy of demand 5 at the end of generation ¢ under f; but not under &;.

As the existence of such a player p is impossible, we conclude that the
leftmost member of I1" under & must have an x-coordinate of at least /. [J

Lemma 2. Let f; be a frontier competition between II5 and II;.. Then
lim f; = 5.

t—o0

Proof. We establish this claim by first showing it to hold for several special
cases, and then argue that the case of the full frontier competition cannot
evolve differently from these special cases.

CASE I: To begin with, consider the following simple frontier competition:

{
with a single s-strategist located at (7, j) with the rest of the region occupied
by the I, . polymorphism consisting of c-strategists. We now consider cases

on the type of polymorphism II.

oIl = Il,5: Since p;; demands 6 and has 4r(r + 1) — r(2r + 1) = 2r* + 3r
compatible neighbors, p;; will earn a score of 6(2r2+3r). But p;;, who follows
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the strategy of fair division and has 4r(r + 1) — 1 = 4r? + 4r — 1 compatible
neighbors, will earn a score of 5(4r?+4r —1). Il will spread into the region
occupied by Il if and only if

5(4r% +4r — 1) < 6(2r? + 3r)
20r +20r — 5 < 12r2 + 18r
82 <5 —2r

which cannot be satisfied, given the range of the variable . Thus the poly-
morphism Il ¢ cannot spread into the region occupied by fair division.

oIl =TI37: Proceeding as above, we obtain the inequality 6r* < 541 which
also cannot be satisfied.

oIl = Ilbs: As above, we obtain the inequality 4r* < 5 + 4r. Here, we
see that the inequality holds when » = 1. In this case, we calculated the
evolution of the frontier as follows (suppose we begin at generation t):

t+1 142 t+3

By the end of generation t + 3, the boundary between Il; and Il;5 has
shifted two squares to the right, and the frontier competition between the
two polymorphisms has disappeared. Notice, though, that we know how the
evolution will proceed from this generation on: the 8-strategists proceed to
the right, eliminating the less successful 2-strategists. At the same time, the
8-strategists at the boundary between IlI5 and Il g will adopt the strategy
of fair division. (Surrounded only by 5-strategists and 8-strategists, these
players earn scores of zero. Following the Imitate Best Neighbor dynamics,
they adopt the strategy of the highest scoring player in their neighborhood.
The general course of the evolution, as shown above, guarantees that the
highest scoring player in the neighborhood of a boundary 8-strategist will be
a player who divides fairly.) Thus, tli>rg> fi =5.
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oIl = TI;5: As above, we obtain the inequality 2r? < 5 + 7r, holding for
r =1, 2, 3, and 4. As before, in generation ¢t + 1 the singular demand 9
neighborhood will expand to occupy every square in the Moore neighbor-
hood of radius r around him (for the values of r specified.) However, none
of the players following demand 9 in generation ¢ + 1 earn a score greater
than 5(4r% + 4r) (the maximum possible score for a 5-strategist). Since all
5-strategists have at least one 5-strategist earning the maximum possible
score, none of the 5-strategists will be replaced at the end of generation t+1,
regardless of the value of the radius r. Furthermore, by the end of genera-
tion t 4+ 3, the boundary will have shifted at least 2r squares to the right.
An argument similar to that for the case where II = Il g applies, and so
tllrg Ji =5

oIl =1Ily10: As above, we obtain the inequality 0 < 5+ 10r, which holds for
all . Applying the argument for the case where II = I1; g, mutatis mutandis,
we conclude that tlim fi =5.

CAske II: Consider the frontier competition shown below, generalizing the
frontier competition of case I:

15 - I,

where within the Moore neighborhood of radius r about the player p;; we
position n s-strategists. We assume, at this point, that there are no other
s-strategists outside of the neighborhood of p;;.

In all cases, introducing additional s-strategists into the neighborhood
of p;; will reduce the score of player p;;, since s-strategists are incompatible.
For the polymorphisms 11, ¢ and Il 7, introducing s-strategists cannot affect
the growth of the region occupied by fair division as these strategies could not,
even before the introduction of additional s-strategists, successfully invade
the region held by Il5; for these polymorphisms, then, it is still true in this
case that tliglo fi =5.

For the polymorphisms Iy g, II; 9, and Ilj 10, introducing additional
s-strategists may affect the growth of the region occupied by fair division in
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several ways. The diagrams below show the possible effects for the Moore (8)
neighborhood and the polymorphism II; g (the case for the polymorphism
I, ¢ will be similar). The diagram contains four two-column pairs in which
the left column contains a schematic indicating the distribution of strategies
in the generation prior to the one displayed in the right column. The strate-
gies of fair division and demand 1 are omitted from the diagram as they may
easily be inferred (all players left of the frontier demand 5, players to the
right of the frontier demand 1 unless indicated otherwise):
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Notice that out of the nineteen possible configurations, not a one successfully
invaded the region occupied by fair division. In addition, for each of the
configurations above, the following properties hold:

1. Players following fair division located on the boundary between 1l5 and 11, g
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will not be replaced in later generations since they all have in their neighbor-
hood a 5-strategist who obtains the maximal possible score of 5(4r? + 4r).

. All 9-strategists on the frontier, except the northernmost and southernmost
will earn scores of 0 as they are isolated from any compatible strategy.

. l-strategists lying within the Moore neighborhood of a 9-strategist or fair
divider will switch strategies to adopt either demand 5 or demand 9.

Thus we see that the demand s strategy will spread into the II;,.
region, turning c-strategists into s-strategists; s-strategists on the bound-
ary between II; and Il ., cut off from compatible strategies, will become
demand 5 strategists. Occasionally a s-strategist p with a score of 0 will
remain an s-strategist since another s-strategist ¢ in p’s neighborhood will
earn a score high enough to prevent p from switching strategies. However,
in the next generation, ¢’s success will have led the c-strategists around ¢ to
become s-strategists, preventing ¢ from obtaining a high score in the next
generation and, consequently, leading to p adopting the demand 5 strategy
in the next generation. Thus, lim = 5.

t—oo

CASE III: Now consider the special case:

,,,,,,,,,,,,,
i

II5 I
i
n s-strategists:

located here

,,,,,,,,,,,,,

where s and c-strategists are distributed within r cells of the boundary be-
tween II; and II, ., with all other cells in the right-hand side of the world
being c-strategists. This case lifts the require that we have an s-strategist
located exactly on the boundary. We assume that no such s-strategist is
so located (otherwise we have case II again). Notice that the spread of s-
strategists into the region occupied by fair division, at the end of generation
t, can be, at best, a subset of that occuring in case II.

The spread of fair division into the region occupied by II, . will occur
as in case II, except that, since s-strategists are not located on the boundary,
more c-strategists in the region occupied by the II; . will become s-strategists
at the end of generation ¢t. We note that properties (1)—(3), as listed in case II,
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still hold at the end of generation ¢ 4+ 1. By an argument similar to that of
case II, we conclude that tlim fi = 5.

CASE IV: Now consider the special case:

r '
(>

115 | c-strategists
s-strategists !

and :
c-strategists |

In this case, we allow for the possibility of having multiple regions of the sort
identified in cases I, II, and III occuring simulataneously in the corridor of
width r indicated in the diagram. Notice the addition of multiple cases does
not significantly affect the argument given previously since the inclusion of
more s-strategists can only reduce the maximum possible score of present
s-strategists.

In addition, note that, whereas before, fair division would spread along
the top and bottom of the region occupied by s-strategists, this may not hap-
pen in this case (at the end of generation t, those cells may be occupied by
s-strategists). However, one may check to see that the only property of those
cells that we used in all preceeding arguments was that the strategy em-
ployed by those cells wsa incompatible with demand s. Since the strategy
of demand s is incompatible with itself, the same effect occurs here. Conse-
quently, tlg})lo fi =5.

CASE V: Now consider the general frontier competition:

H5 Hs c

)

One can check that the argument given in case IV did not rely on the presence
of only c-strategists in the half-infinite plane in the region occupied by II, .
Furthermore, inclusion of s-strategists there will only serve to aid the spread
of fair division, since adding additional s-strategists can only decrease the
maximum possible score held by any particular s-strategists.
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Therefore, tlim fi=05. O

Lemma 3. Let & be a strategy distribution for a population P. If & has an
embedded frontier competition between 5 and I = { s, ¢ }, then lim;_,o & =
5.

Proof. Follows immediately from lemmas 1 and 2. O

Now consider the case where we have a competition between the poly-
morphisms II5 and II; . spatially positioned on an infinite plane as follows:

HSC

)

IT5

Although I do not included the details here, I claim that one can carry out
an argument similar to the one given previously for the case of the frontier
competition; namely, that regardless of the spatial positioning of s and ¢
strategies in the region occupied by Il ., the strategy of fair division will
have expanded its territory by one square to the north and east within three
generations. I also claim that a lemma similar to lemma 1 can be established
for the case of the “corner competition” illustrated above.

Finally, notice that in the argument of Lemma 2 (and in the analogous
argument(s) which can be given for the case of the corner competition), we
did not need the assumption that the strategy of fair division occupied the
entire half-infinite plane (or a quadrant of the plane). In both cases, we
only needed the block of players following fair division to be large enough to
survive the initial advance of the competing polymorphism. Consequently, if
there exists a block of players of this size, the population will converge to a
state of fair division.

32



References

1]

2]

3]

8]

[9]

[10]

[11]

[12]

[13]

Richard Durrett and Simon Levin. The importance of being discrete
(and spatial). Theoretical Population Biology, 46:363-394, 1994.

Joshua A. Epstein. Zones of cooperation in demographic prisoner’s
dilemma. Complexity, 4(2):36-48, 1998.

Rainer Hegselmann. Social dilemmas in lineland and flatland. In
Liebrand and Messick, editors, Frontiers in Social Dilemmas Research,
pages 337-361. Springer, 1996.

Bernardo A. Huberman and Natalie S. Glance. Evolutionary games and
computer simulations. Proc. Natl. Acad. Sci., 90:7716-7718, August
1993.

Michihiro Kandori, George J. Mailath, and Rafael Rob. Learning, mu-
tation, and long run equilibria in games. FEconometrica, 61(1):29 56,
January 1993.

Kristian Lindgren and Mats G. Nordahl. Evolutionary dynamics of spa-
tial games. Physica D, 75:292-309, 1994.

John F. Nash. The bargaining problem. FEconometrica, 18:155-162,
1950.

Martin A. Nowak and Robert M. May. Evolutionary games and spatial
chaos. Nature, 359:826-829, October 1992.

Martin A. Nowak and Robert M. May. The spatial dilemmas of evolu-
tion. International Journal of Bifurcation and Chaos, 3(1):35-78, 1993.

Brian Skyrms. Fwvolution of the Social Contract. Cambridge University
Press, 1996.

Peter D. Taylor and Leo B. Yonker. Evolutionary stable strategies and
game dynamics. Mathematical Biosciences, 40:145 156, 1978.

H. Peyton Young. The evolution of conventions. FEconometrica,
61(1):57-84, January 1993.

P. Young. An evolutionary model of bargaining. Journal of Economic
Theory, 59:145-168, 1993.

33



