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Abstract

Classical mechanics is often considered to be a quintessential example of
a deterministic theory. I present a simple proof, using a construction mathe-
matically analogous to that of the Pasadena game (Nover and Hájek [2004]),
to show that classical mechanics is incomplete: there are uncountably many
arrangements of objects in an infinite Newtonian space such that, although
the system’s initial condition is fully known, it is impossible to calculate
the system’s future trajectory because the total force exerted upon some ob-
jects is mathematically undefined. It is then shown how variations of this
discrete system can be obtained which increasingly approximate a uniform
mass distribution, similar to that underlying a related result, due to von Seel-
iger ([1895]). It is then argued that this incompleteness result, as well as that
presented by the Pasadena game, has no real philosophical significance as
it is a mathematical pseudoproblem shared by all models which attempt to
aggregate infinitely many numerical values of a certain kind.

1 Introduction.

Classical mechanics, consisting of Newton’s three laws of motion along with
Newton’s law of universal gravitation, is often considered to be a quintessential
example of a deterministic theory. For example, in Elbow Room, Daniel Dennett
states that ‘So-called “classical” or Newtonian physics is deterministic’ (Dennett
[1984], pg. 151). What this means, exactly, is given a precise and clear statement
by David Z. Albert as follows:

Given a list of the positions of all the particles in the world at any
particular time, and of how those positions are changing, at that time,
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as time flows forward, and of what sorts of particles they are, the
universe’s entire history, in every detail, from that time on, can in
principle be calculated (if this theory is true) with certainty. (Albert
[2000], pg. 2)

Unfortunately, this characterisation of classical mechanics is not entirely correct.
In what follows, I shall provide a simple mathematical proof that classical me-
chanics is indeterministic because it is incomplete. This result may be of interest
for several reasons. The first is that it involves a construction similar to that used
by Nover and Hájek ([2004]) to generate a problem for decision theory. The
second reason is that the simple proof, which makes a number of unrealistic as-
sumptions, can be modified in such a way that the initial conditions which lead to
the incompleteness result could be realised if the actual universe were Newtonian
and infinite. And, finally, the third reason this proof may be of interest is that
we can show that an earlier, related result known as ‘Seeliger’s Paradox’ can be
increasingly approximated a limit of a variant of the discrete systems considered
here.

Given some physical theory T , there are three ways that T can fail to be de-
terministic. The first way T might fail to be deterministic is that, even if we have
a complete state-description of the universe,1 there will be more than one possi-
ble future history of the universe which is compatible with, and predicted by, the
causal laws. Another way of putting the point is to say that, given a set of initial
conditions, there will be more than one solution to the equations of motion for
the entire universe. Norton ([2008]) gives a simple and elegant example in which
this kind of failure of determinism can happen in classical mechanics. In Nor-
ton’s example, if you position a ball at the apex of a dome of precisely the right
shape (the shape of the dome is absolutely crucial) it turns out that the equation of
motion for the ball has multiple solutions. One solution is for the ball to remain
motionless forever (which is what you would expect), but there exist an infinite
family of alternate solutions in which the ball remains motionless for some arbi-
trary interval of time, and then spontaneously moves, unprovoked, in an arbitrary
direction down the side of the dome.

It is worth noting that this first type of failure of determinism is compatible
with a strict, literal reading of the characterisation of determinism provided by
Albert above. Note that Albert requires that ‘the universe’s entire history, in every

1I use this expression, rather than the formulation used by Albert in the quoted passage, be-
cause not all deterministic theories allow us to speak of the position, velocity, and type of particle
at a particular time, for the entire universe. Albert’s characterisation of determinism applies to
classical mechanics because classical mechanics assumes absolute simultaneity. Special relativity,
on the other hand, is actually a better example of a deterministic theory than classical mechanics,
even though the relativity of simultaneity means that we cannot speak of the state of the universe
at a particular time.
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Figure 1: A configuration of balls whose collisions form a supertask, sending all
of them off to infinity in finite time.

detail, from that time on, can in principle be calculated (if this theory is true) with
certainty’. In the case of Norton’s Dome, we can calculate the entire history of
the universe, in every detail, from the time the universe is initially set up, with
certainty. It’s just that there happen to be multiple such histories that we can
calculate with certainty.2

A second way that a physical theory can fail to be deterministic results from
mathematical anomalies generated by the possibility of particles having unbounded
velocities. Consider the following setup, due to Laraudogoitia ([1997]): in a clas-
sical system, position one ball stationary at the origin, a second ball located to its
right but moving towards it at some speed, a third ball located a bit further to its
right but moving towards it even faster, and so on (see figure 1). This configura-
tion can be arranged so that the first collision between B0 and B1 takes place at
t = 1

2 , the second collision between B0 and B1 (which happens after B2 hits B1) at
t = 3

4 , and so on. It can be shown that, with a suitable selection of initial velocities,
all the balls will ‘disappear’ to infinity in finite time. Since the laws of classical
mechanics are invariant under time reversal, this means that it is possible for an
infinite number of particles to spontaneously appear, ‘flying in’ from infinity.3

And the third way that a physical theory T can fail to be deterministic is that,
even if we have a complete state-description of the universe, the theory T might
fail to yield any answer whatsoever about the future history of the universe. This
could happen if the equations of motion failed to have any solution at all. This can
also happen if some of the essential quantities required by the equations of mo-
tion — quantities which, in most cases, are determined by the initial conditions
— fail to be mathematically well-defined. This third kind of failure of determin-
ism is when the physical theory T turns out to be incomplete. More precisely, a

2As an aside, this is an example of the rare case where a charitable interpretation of someone’s
intended meaning — rather than a strict, literal reading of what they said — actually serves to fal-
sify their claim. I think Albert intended us to read his characterisation of determinism as implicitly
including the claim that the future history of the universe, which we can calculate from its initial
state, is unique. But this charitable interpretation transforms his characterisation of determinism
from one which isn’t falsified by the example of Norton’s Dome into one which is.

3This ‘space invaders’ possibility was originally noted by Earman ([1986]). The fact that it is
possible to achieve this, without collisions, in finite time, with a finite number of particles, was
first proven by Xia ([1989]); a less technical discussion is provided by Saari and Xia ([1995]).
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physical theory T is incomplete when there exist complete state descriptions of
the universe, which belong to the domain of physically possible states recognised
by the theory, but for which the theory does not yield any answer at all regarding
the future history of the system.

Prima facie, the incompleteness of a physical theory seems interesting because
it suggests that our understanding of the physical universe may be incomplete as
well. If there are valid ways that particles could be arranged in the universe, and
yet our current best physical theory yields no prediction as to the future state of
the universe, that suggests there either may be additional physical forces of which
we are unaware or that our mathematical formulation of the physical laws is not
entirely correct. (At least, that is, if we assume that something will happen if
particles are arranged in that particular way.) However, at the end of the paper I
will argue that this interpretation of the incompleteness result is wrong. Instead,
we should see incompleteness of the kind identified here as nothing more than
a mathematical artefact resulting from modelling assumptions regarding infinite
domains. Since it is natural, for reasons of mathematical convenience, to assume
infinite domains, this means we should be cautious about taking problems gen-
erated by this kind of incompleteness as problems of philosophical significance
which need to be solved.

2 The setup.

Consider the following system of particles, arranged in a line, in a classical New-
tonian universe where the only force in operation is gravity. Suppose that, at
the origin, we have an object with unit mass m0 = 1 and at each of the points
xk = (−1)k−1 · k, for k ∈ N, we position an object with mass mk =

k
G , where G

is the gravitational constant (see figure 2).4 Given this initial configuration, how
will the mass m0 at the origin move?

3 The problem.

To answer this question, we need to determine the total force F of all the individual
gravitational forces Fk exerted on the unit mass at the origin. By construction, the
force contribution Fk of the kth object is

Fk = G
m0mk

k2 = G
1 · k

G

k2 =
1
k

4Through this paper I abuse notation quite frequently. Sometimes I shall use G as a constant
without units attached, as when defining the mass mk. Sometimes, as when calculating the grav-
itational force Fk exerted by the kth object on m0, I use G as the gravitational constant with units
attached. Which usage is intended will be clear from the context.
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Figure 2: An illustration showing the first six particles, and their masses, located
around the unit mass m0 at the origin. Tick marks are shown at locations x = k for
integral values of k.

and so, if we naı̈vely sum all the individual forces, we see that the total force F
acting on the mass m0 is

F =
∞∑

k=1

Fk = 1 −
1
2
+

1
3
−

1
4
+

1
5
−

1
6
+ · · · (1)

which means we have a problem.
The problem is that the series which appears in equation (1) is the alternating

harmonic series, which is conditionally convergent. By the Riemann Rearrange-
ment Theorem, the value we get for F depends on the order in which we sum
the terms. If we sum the terms in the order initially noted above, we find that
F = ln(2), so we would predict that the unit mass at the origin should move in the
positive x direction. However, suppose we calculate F by adding the individual
force contributions Fk as follows:

F = 1 −
1
2
−

1
4
−

1
6
−

1
8
−

1
10
−

1
12
−

1
14
−

1
16
−

1
18
−

1
20
−

1
22
−

1
24
−

1
26
−

1
28
−

1
30
−

1
32

+
1
3
−

1
34
−

1
36
−

1
38
−

1
40
−

1
42
−

1
44
−

1
46
−

1
48
−

1
50
−

1
52
−

1
54
−

1
56
−

1
58
−

1
60
−

1
62
−

1
64

+
1
5
−

1
66
−

1
68
−

1
70
−

1
72
−

1
74
−

1
76
−

1
78
−

1
80
−

1
82
−

1
84
−

1
86
−

1
88
−

1
90
−

1
92
−

1
94
−

1
96

.

.

.

This reordering proceeds by adding sixteen ‘negative’ contributions for each ‘pos-
itive’ contribution. Under this reordering, it turns out that F = − ln(2), so we
would predict that the unit mass at the origin should move in the negative x direc-
tion!5 Since classical mechanics does not specify which order we are to add the

5A rearrangement of an infinite series where a fixed number of positive terms (taken in the
same order as in the original series) is followed by a fixed number of negative terms (taken in the
same order as in the original series) is known as a regular rearrangement. Brown et al. ([1985])
proved that, if A(m, n) denotes the sum of a regular rearrangement of the alternating harmonic
series where m positive terms are following by n negative terms, then A(m, n) = ln(2) + 1

2 ln
(

m
n

)
.
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terms, there is simply no answer to the question of how the unit mass at the ori-
gin will move: it is mathematically indeterminate. As a result, no solution exists
for the Newtonian equations of motion regarding how the mass of the origin will
move. This means classical mechanics is incomplete, as there exist initial configu-
rations of particles in space for which the future state of the system is undefined.6

Those acquainted with the Pasadena game (Nover and Hájek [2004]) will
recognise that what we have done is translate the underlying puzzle from its
decision-theoretic context into a physical context. In the Pasadena game, a fair
coin is flipped until a heads occurs, with the amount ‘won’ defined to be (−1)k−1 ·
2k

k , if the first head occurs on the kth toss. (A negative amount means that the per-
son playing the game actually loses that amount of money.) The problem raised
by the Pasadena game for decision theory is that, when we go to calculate the
expected value of the game, the probability-weighted payoffs yield the terms of
the alternating harmonic series. Since there is no specified order in which to sum
the probability-weighted payoffs, the game has no well-defined expected value.7

Here, what we have done is arrange masses of an appropriate size, in space, so that
the force contribution of the kth mass corresponds to probability-weighted payoffs
of the Pasadena game. If the force contribution of the kth mass corresponds to
a ‘win’ in the Pasadena game, it pulls the mass m0 to the right (i.e., the positive
direction). If the force contribution of the kth mass corresponds to a ‘loss’ in the
Pasadena game, it pulls the mass m0 to the left (i.e., the negative direction).8

In the case shown, where 16 negative terms follow 1 positive term, we have

A(1, 16) = ln(2) +
1
2

ln
(

1
16

)
= ln(2) +

1
2

ln(2−4) = − ln(2).

6I use the term ‘incomplete’ rather than ‘indeterminate’ because the structure of this problem
differs from other examples illustrating indeterminacy in classical mechanics. In the situation of
Norton’s Dome (Norton; Norton [2003; 2008]), all of the relevant forces are known. The problem
Norton identified is that multiple solutions existed, regarding the future trajectory for the mass
at the apex of the sphere, and so the future state of the universe was not unique. In the case of
Earman’s ‘space invaders’ (Earman [1986]), the fact that classical mechanics places no limit on
the velocity of particles means that objects can escape to infinity in finite time. The fact that the
laws of classical mechanics are invariant under time reversal thus means it is possible for particles
to appear from nowhere by ‘zooming in’ from infinity in finite time: a case of indeterminism
because particles appear out of nothing in an uncaused fashion. However, both of these examples
differ from this construction. Here, the total force acting on the mass at the origin depends on the
order in which the individual contributing forces are summed and, since there is no answer to the
question of what order we are to sum the contributing forces, the relevant force is undefined.

7Some, though, have sought to extend the valuation methods of traditional decision theory so
as to provide a well-defined value of the Pasadena game (see Easwaran [2008] for details).

8Essentially, this is the gravitational analogue of the puzzle considered by Linnebo ([2023]).
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4 Old wine in a new bottle?

Cognoscenti will recognise that the problem described above is similar in spirit
to a problem first pointed out by Hugo Seeliger in 1895. ‘Seeliger’s Paradox’,
as it became known, is that when a unit mass in an infinite universe is under the
influence of a uniform mass distribution, then the gravitational force exerted on the
unit mass fails to converge. (For a discussion of the history of Seeliger’s paradox,
and the various solutions proposed, see Norton [1999].)

Although it might appear that we have here nothing more than old wine in a
new bottle, there are three reasons why the above construction is of interest. The
first reason is that whereas Seeliger’s proof required a continuous uniform mass
distribution throughout an infinite universe, the example provided here is discrete.
Furthermore, since the key fact needed to obtain the incompleteness result is that
the alternating harmonic series is conditionally convergent, we can in principle
choose the masses mk appropriately so as to generate Fk corresponding to any
conditionally convergent sequence. This shows that the problem isn’t just limited
to a continuous uniform mass distribution. If we assume that it is possible to
postulate point masses of arbitrary size, then there are actually uncountably many
different initial configurations for which the gravitational force fails to converge.

The second reason is that, as we will see in the next section, it is possible to
obtain a formulation of the problem which would be, at least in principle, real-
isable if the actual universe were Newtonian. This is somewhat surprising, since
both Seeliger’s original paper and the presentation of problem in section 2 in-
volve some unrealistic assumptions. It turns out that these unrealistic assumptions
actually play no significant role in establishing the incompleteness result.

The third reason that this statement of the problem might be of interest is that,
as we will see in section 6, that by taking a suitable limit of our problem we are
able to generate a sequence of discrete incompleteness results that approximates,
with ever-greater accuracy, the uniform mass distribution underlying Seeliger’s
paradox. Let us now examine these last two points in detail.

5 Keep it real.

There are a couple of concerns which might be raised regarding the construction
given in section 2. The first is that the numerical value of the gravitational con-
stant G is quite small — 6.674 × 10−11 N·m

kg2 — which means that the mass of the
first object, 1

G , is quite large: slightly more than 14,983,518,130 kilograms. The
second is that the mass of the kth object increases without bound. If one purported

For a detailed analysis of that problem, with a focus on its metaphysical implications, see Andrew
Lee’s ‘A Puzzle about Sums’, forthcoming in Oxford Studies in Metaphysics.
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‘benefit’ of the construction given is that it is discrete, it is unclear whether this
really counts as an improvement. Perhaps all we have shown is that classical
mechanics cannot completely describe a universe in which point objects with un-
bounded mass can exist. Malament ([2008]) observes that all kinds of trouble can
be generated for classical mechanics if we posit (i.e., ‘make up’) forces without
any restriction. Perhaps what we’ve seen just shows that further trouble can be
generated if we posit objects without any restriction.

For this reason, I now show that it is possible to obtain a slightly more realistic
formulation of the problem, one which requires nothing more than ordinary parti-
cles positioned in a Newtonian universe.9 To see how, we proceed in stages. We
will first show how the need to posit objects of unbounded mass can be avoided,
constructing a version of the incompleteness result which requires nothing more
than objects with a mass of 1

G . If we then replace the objects with a mass of 1
G

with, say, neutrons, we obtain a version of the incompleteness result using known
particles, based on a rescaled version of the alternating harmonic series.

We thus need to show how, given an object mk of mass k
G which exerts a grav-

itational force Fk upon the object m0, it is possible to construct an arrangement of
some (finite) number of objects, each having a mass of 1

G , such that the aggregate
force of that finite set of objects upon m0 is equivalent to Fk. Let us call this a
gravitationally equivalent decomposition of the force Fk. That is the first task.
The second task is to show that this equivalent construction can be done for each
object posited in section 2 in a way that doesn’t require the set of objects needed
for each decomposition to overlap, or become arbitrary close, in space.

To begin, note that there is nothing to do for the object m1, since that is a sin-
gle object with mass 1

G already.10 Now consider the object m2, with a mass of 2
G ,

positioned at x = −2, which exerts a force of F2 =
1
2 on m0. Notice that if we

symmetrically position two objects with mass 1
G at just the right height above and

below the x-axis, as shown in 3(b), the vertical forces exerted on m0 will cancel
9It is important, though, not to overstate the degree to which this version of the problem is

‘slightly more realistic’. We will show that the incompleteness result holds for ordinary particles,
such as neutrons, located at the appropriate points in space. The way to think of this is as an initial
configuration of the universe, possibly created by God, since the configuration falls within the
domain of possible states according to Newtonian physics. I make no claim as to whether Newto-
nian physics could hold during the creation or formation of this state. I suspect not, because if we
cannot calculate future states of the universe, for some configuration C, because key quantities are
mathematically undefined, it is unclear if we could calculate past states of the universe which led
to the configuration C. Since the laws of classical mechanics are symmetric with respect to time,
I suspect this would not be possible.

10That said, note that the reasoning involved in this paragraph could also be applied to m1: it is
possible to position two objects, each with mass 1

G , at x = 1 with some vertical displacement d,
such that the total gravitational force exerted on m0 is equivalent to that of m1. This is shown in
later figures, and demonstrated in Appendix A.
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and the sum of the horizontal forces from the two symmetrically placed objects
exerted on m0 will be equivalent to that of a single object with mass 1

G placed
at x = −2, namely a force of 1

4 . (Calculations for this and remaining diagrams
can be found in appendix A.) Now, suppose we symmetrically place two addi-
tional masses some distance ϵ closer to m0 at the same vertical displacement as
before. Since these two additional masses are now closer to m0, although the ver-
tical forces exerted on m0 will cancel, the sum of the horizontal forces will now
be greater than a single object with mass 1

G placed at x = −2. In order to ensure
that the sum of the horizontal forces is what we want, the vertical displacement of
these two additional masses will need to be slightly greater. The final arrangement
is shown in figure 3(c). By construction, the net gravitational force of the four ob-
jects with mass 1

G at the various positions shown is equivalent to the gravitational
force of a single object with mass 2

G located at x = −2.

m0 = 1m2 =
2
G

F2 =
1
2

(a) The target

m0 = 1

m+2,1

m−2,1

(b) Step 1

m0 = 1

m+2,1

m−2,1

m+2,2

m−2,2
(c) Step 2

Figure 3: How to construct a gravitationally equivalent decomposition of m2.

This construction can be repeated. For the case of the object m3, located at
x = 3 with a mass of 3

G , we need to position six objects, each having a mass of 1
G

at suitable positions along the x-axis so that all of the vertical force components
exerted on m0 cancel, and all the horizontal components sum to F3 =

1
3 . This

completes the proof-sketch of the first task: that it is always possible to perform a
gravitationally equivalent decomposition of the object mN , with mass N

G , into 2N
objects, each with a mass of 1

G , such that the total force exerted on m0 is the same.
Now let us turn to the second task: to show that the gravitationally equivalent

decomposition can be done without requiring the set of objects to overlap, or to
become arbitrarily close in space. To see this, notice that the decomposition of
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m0 = 1

m+3,1

m−3,1

m+3,2

m−3,2

m+3,3

m−3,3

Figure 4: How to construct a gravitationally equivalent decomposition of m3.

object mk involves positioning k pairs of objects, with the first pair located at
xk = k (if k is odd) or at xk = −k (if k is even), and then moving ϵ closer towards
the origin, with each pair of objects generating a horizontal-force equivalent of
1
k2 on m0.11 As can be seen from the calculations in the appendix, not only is
each pair of objects no closer than ϵ away (horizontally) from any other object,
but the coordinate calculated for y2(k+1),1 is greater than the coordinate calculated
for y2k,2k. This means that the objects which appear in the decomposition will be
isolated both horizontally and vertically by a distance of at least ϵ.

Now consider the following situation: suppose that we have an object of unit
mass positioned at the origin and at the points xk = (−1)k−1 · k, for k ∈ N, we
imagine positioning an object with the mass of k neutrons. Given that problem,
determine the gravitationally equivalent decomposition with pairs of neutrons. In
the decomposition, every neutron will be at least ϵ away from every other neutron,
and since we can safely take ϵ = 1

10 each neutron will be isolated in space. In this
new problem, the force contribution of the kth decomposed set will be

Fk = G
m0 · (kno)

k2 = G
no

k
where no denotes the mass of a neutron. Attempting to naı̈vely sum all the forces
in this problem yields

F =
∞∑

k=1

Fk = G
no

1
−G

no

2
+G

no

3
−G

no

4
+G

no

5
−G

no

6
+ · · ·

= Gno

(
1 −

1
2
+

1
3
−

1
4
+

1
5
−

1
6
+ · · ·

)
.

This new series is nothing more than the alternating harmonic series rescaled by
a very small positive constant. The series is still conditionally convergent, and

11When each pair of objects generates a horizontal-force equivalent of 1
k2 , and we have k pairs

the aggregate force on m0 is thus k
k2 =

1
k , which is the target value Fk.
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hence classical mechanics yields no answer to the question of how the unit mass
at the origin will move.

6 Taking the limit.

There are two further points worth noting. The first is that, as shown in figure 5,
the distribution of mass required for this incompleteness result is quite sparse
when compared with Seeliger’s paradox. Instead of a continuous, uniform dis-
tribution of mass throughout the universe, this discrete version of the problem,
featuring point particles, involves a virtually empty universe with measure zero of
the space occupied by mass.

The second, somewhat surprising, point is that, if we consider variant formu-
lations of the problem, we find that our Pasadena-game inspired situation allows
us to obtain ever-greater approximations of Seeliger’s paradox in the limit. To
see how, first consider what happens if we construct the gravitationally equivalent
decomposition using objects with a mass of 1

10G . In this case, we will now need 10
pairs of objects to replace m1, 20 pairs of objects to replace m2, and so on. If we
keep ϵ = 1

10 , then the pairs of objects introduced in the decomposition of mk will
actually span the interval from x = (−1)k−1 · k to within ϵ of x = 0, in steps of ϵ.
Here, as shown in figure 6(a), the pairs of objects form graceful arcs, converging
towards the origin.

x

y

−4 −2 1 3 5

Figure 5: The distribution of particles in space for the gravitationally equivalent
decomposition of the first four masses. The target mass is shown as a gray disk.
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x

y

−4 −2 1 3 5

(a) The distribution of particles in space for a
gravitationally equivalent decomposition
using pairs of objects having an individ-
ual mass of 1

10G instead of 1
G .

x

y

−4 −2 1 3 5

(b) The resulting distribution of particles in
space for a gravitationally equivalent de-
composition of the original problem but
using pairs of objects having a total mass
of slightly more than 1

100G .

Figure 6: Two variant gravitationally equivalent decompositions which increas-
ingly approximate smooth arcs towards the origin.

In fact, if we construct the gravitationally equivalent decomposition using even
smaller pairs of masses of the right value, the pairs will form ever-greater approx-
imations to continuous arcs approaching the origin. Figure 6(b) illustrates this
for the case where each object in the pair has a mass just slightly exceeding 1

200G ,
where 100 pairs are used to replace m1, 200 pairs to replace m2, and so on. The
important takeaway message from this figure is that it suggests that it may be pos-
sible to increasingly approximate Seeliger’s paradox, in the limit, if we consider
suitably rescaled versions of the problem, starting with a case where the initial
objects are positioned at xk = (−1)k−1 · k

10n , for some fixed n and k ∈ N. (Details
of the construction can be found in Appendices A and B.)

7 So what?

Here is a brief summary of what we have shown: by translating the basic problem
of the Pasadena game into a physical context, we have obtained a new proof that
classical mechanics is incomplete. Furthermore, the incompleteness of classical
mechanics does not rest on particularly unrealistic assumptions, such as peculiar
forces or objects of unbounded mass. And, finally, by performing a gravitation-
ally equivalent decomposition in the right way, it can be shown that our discrete
formulation increasingly approximates Seeliger’s paradox.

What’s the overarching philosophical significance? There is a shallow lesson
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to be drawn and, I think, a deeper one. The shallow lesson is simply to correct
bad philosophical practice: although some people cite classical mechanics as a
canonical example of a deterministic physical theory, it really isn’t. The shallow
lesson, then, continues the project started by Earman ([1986]), in trying to correct
misimpressions that are wide-spread throughout the philosophical literature. As
Earman said, ‘when told that classical physics is not the place to look for clean and
unproblematic examples of determinism, most philosophers react with a mixture
of disbelief and incomprehension.’ One benefit of translating the Pasadena game
into the context of classical mechanics is that it gives a relatively simple illustra-
tion of how classical mechanics fails to be deterministic by being incomplete, a
point which has been insufficiently appreciated.

It seems to me that we can distinguish two different senses in which classical
mechanics is incomplete.12 I don’t think these two senses are mutually exclusive,
and both might prove to be philosophically interesting notions to explore. The
first sense is the one I have stressed in this paper: that there exist complete state-
descriptions of physical systems — where all of the initial positions, velocities
and masses of particles are known, along with all of the individual pairwise forces
exerted between particles — and yet classical mechanics fails to provide an answer
to the question of how the state of the system will evolve in the future. This first
sense is an incompleteness of the solutions of the equations of motion: some
physical configurations simply do not have any solutions whatsoever.

However, we could adopt an alternative diagnosis of what has gone wrong.
The alternative diagnosis would locate the incompleteness of classical mechanics
in its failure to specify precisely which complete state-descriptions of physical
systems are actually physically possible states appearing in the domain of the
theory. This second sense of incompleteness, then, relates to the statement given
by Albert at the start of this paper:

Given a list of the positions of all the particles in the world at any
particular time, and of how those positions are changing, at that time,
as time flows forward, and of what sorts of particles they are, the
universe’s entire history, in every detail, from that time on, can in
principle be calculated (if this theory is true) with certainty. (Albert
[2000], pg. 2)

Classical mechanics is incomplete because, clearly, not every such list allows us to
calculate the future history of the universe with certainty. We need more informa-
tion as to which such lists are physically valid (or viable) initial states, recognised
by the theory. Until we have that information, classical mechanics is incomplete.

12I would like to thank an anonymous referee for suggesting that I consider including a short
discussion along these lines.
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The deeper lesson requires us to ask why, or whether, we should take the in-
completeness result seriously in the first place. At the outset, I suggested that
incompleteness results for physical theories were prima facie interesting because
they suggested the possibility that we didn’t fully understand the physics of the
world. If the world could be a certain way (that is, if the postulated initial con-
ditions are in the domain of the theory), and we expect something to happen, if
the world were that way, then clearly if we cannot say what would happen, if the
world were that way, then there is something we don’t know. But I suggest it
would be a mistake to infer that the incompleteness result says something inter-
esting about what we don’t know regarding physical theory. It could be the case
that our knowledge of physical theory is basically correct, but there are additional
metaphysical constraints, of which we are unaware, which exclude those prob-
lematic states for which the physical theory yields no prediction. As, for example,
would happen if the universe were finite but just really, really large. If this were
the case, the apparent incompleteness result would simply be a pseudoproblem
resulting from unwarranted reification of mathematical assumptions (e.g., an in-
finite universe) introduced for reasons of simplicity. This point resonates with an
argument made by Wilson ([2009]).13

Consider the incompleteness result discussed in this paper. In addition to the
laws of classical mechanics, it assumes an infinite universe in which infinitely
many particles (of some kind) can be positioned arbitrarily. It assumes, in other
words, an infinite dimensional state space where every point in that state space
falls within the domain of the theory. There are a number of reasons why it might
be mathematically convenient to model the physical universe that way, but it is
a mistake to think that mathematically convenient modelling assumptions should
yield insight regarding what is physically possible.14 We use mathematics to de-

13In that paper, Wilson argued that many apparent cases of indeterminism are better understood
as cases of ‘missing physics’, in that ‘standard presentations invariably weasel quite a bit with
respect to foundational assumptions that must be settled before a feature such as determinism can
be coherently adjudicated’ (Wilson [2009], pg. 181). What kind of foundational assumptions?
In the case analysed in this paper, the foundational assumptions concern such basic matters as
whether classical mechanics should have, in its domain, any possible spatial configuration of in-
finitely many particles of any possible mass. The answer to how we fill in the ‘missing physics’ of
admissible states in the domain of classical mechanics will decide whether classical mechanics is
incomplete or not.

14I am grateful to an anonymous referee for pointing out that the unmediated action-at-a-
distance of Newtonian gravitational theory, which gives rise to the problems discussed in this
paper, might itself be viewed as nothing more than a mathematically convenient modelling as-
sumption. Indeed, Seeliger himself proposed modifying Newton’s law of gravity by adding an
attenuation factor of e−λr, for some λ > 0, which ensured that the gravitational force converged
(see Norton [1999], pg. 294). And alternative forms of the gravitational potential were explored
by Neumann ([1877]). In modern particle physics, alternative forms of the gravitational potential
are explored in order to prevent these kinds of issues from arising. The important point is that
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scribe and model the physical world because that is one of the few tools we have
which is adequate for the job. The problem we face is that sometimes mathe-
matical reification leads to genuine discoveries, as when Dirac took seriously the
negative energy solution to his relativistic version of the Schrödinger wave equa-
tion, and in so doing paved the way for the discovery of antimatter. But sometimes
mathematical reification creates pseudoproblems.

It is, perhaps, fitting that the demonstration of the incompleteness of classical
mechanics used in this paper relied on the same mathematical fact used by the
Pasadena game to generate trouble for standard decision theory. Towards the end
of their paper, when they consider possible responses, Nover and Hájek reject the
suggestion that the Pasadena game be ignored (and, therefore, not seen to present
a real problem for decision theory) because the game involves an infinite state
space. One part of their reasoning runs as follows:

The first response is to balk at the game’s infinite state space: the
assumption that the coin could land heads for the first time on the
first toss, or the second, or the third, ad infinitum. More generally,
the response is that decision theory should be confined to actions that
have finitely many consequences—that is, to decision problems that
have finitely many states. What could motivate this response?

On the one hand, it might be purely theoretical considerations: it
might be claimed that as a matter of conceptual necessity, all deci-
sion problems have finitely many states. But then the response strikes
us as high-handed: for we have no trouble countenancing infinitely
many states elsewhere in our theorizing—in physics, for example.
(Nover and Hájek [2004], pg. 246)

Yet what we have seen is that one must be careful in countenancing infinite state
spaces even in physics (at least Newtonian physics), because a problem struc-
turally analogous to that posed by the Pasadena game can arise there, as well.
And, in fact, there will be many mathematical models of systems for which the
same trick can be used to generate apparent paradoxes. As long as the model
needs to aggregate infinitely many values of the right magnitude, both positive
and negative, and there is no natural order to aggregate them, an incompleteness
result will probably exist.15

such modifications often make virtually no practical difference, from an empirical perspective,
but have huge conceptual implications. For a discussion of some recent approaches adopted in
contemporary physics, see Pitts ([2011]).

15Consider a democracy containing infinitely many people where they use majority rule to make
decisions. Majority rule is defined as follows: a vote for a proposal is represented as +1 and a vote
against a proposal is represented by −1, and the proposal passes if the sum of all votes is greater
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Since mathematical anomalies can easily arise when we model systems, we
need to distinguish between anomalies which depend purely upon assumptions in-
troduced for reasons of mathematical convenience, and those which do not. This
distinction matters because, I suggest, only puzzling results of the second cate-
gory present interesting challenges for how we interpret and understand a theory.
I would put Dirac’s interpretation of the negative energy solution in the second cat-
egory, but the argument for the incompleteness of classical mechanics discussed
here — as well as the problem of how to value the Pasadena game — in the first
category. The challenge, of course, when faced with a puzzling result that turns
on a mathematical assumption, is deciding to which category the assumption be-
longs.
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A The general form of the calculations.

Let us first establish some notational conventions. The target mass will be one
of the masses mk as set out in the initial construction from section 2. This mass
generates a force Fk on m0, which is the target force. Generating a gravitationally
equivalent decomposition involves showing, for each mk, how pairs of objects,
each having the same source mass ms, can be positioned so that the overall set
generates a gravitational force equivalent to Fk. In what follows, we shall first
derive formulae for the specific case where ms =

1
G , and then consider some

generalisations. Although the math might look a bit ugly, setting up the equations
involves literally nothing more than high school trigonometry.

To begin, note that, given some target mass mk, each of the pairs of masses
used to generate the gravitationally equivalent decomposition for Fk will be lo-
cated at slightly different places. Let us introduce some notation so that we may

than 0. Suppose that each voter is assigned an unique ID number such that for each k ∈ N there is
exactly one person with that ID number. Now suppose an election is held to decide Proposition P.
Suppose everyone with an odd ID number votes for P and everyone with an even ID number votes
against P. Does Proposition P pass?
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refer to these pairs of objects with precision. For the target mass mk, we will use
m+k,1 and m−k,1 to refer to the members of the first pair of objects. This notation is
chosen because the x-coordinate of each object is the same, and their y-coordinates
have the same absolute value, symmetrically reflected along the x-axis. The sec-
ond pair of objects will be labelled m+k,2 and m−k,2, and so on. (In cases where we
do not need to differentiate between the two members of a pair, we shall omit the
superscript.) The force exerted by an individual mk,i on m0 will be denoted Fmk,i

and its x and y components will be denoted by F x
mk,i

and Fy
mk,i respectively. The

angle of Fmk,i , measured from the x-axis, will be denoted by θmk,i . To construct the
gravitational force equivalent of Fk, when ms =

1
G we need to introduce k pairs of

objects such that each pair exerts a horizontal force of 1
k2 on m0.

m0 = 1

Fy
m1,1

Fy
m1,1

m+1,1

m−1,1

F x
m1,1

Fm+1,1

Fm−1,1

θ1,1

y1,1

y1,1

Figure 7: The gravitationally equivalent decomposition for the first target mass
m1.

Let us begin by determining the gravitationally equivalent decomposition for
the target mass m1, as shown in figure 7. The mass m+1,1 exerts a force of F+m1,1

on m0

and the mass m−1,1 exerts a force of F−m1,1
on m0. Notice that, due to the symmetrical

positioning of the pair, the y-components of F+m1,1
and F−m1,1

cancel out. Since the
target force is F1 = 1, we need 2F x

m1,1
= 1. Since F x

m1,1
= Fm1,1 cos θ1,1, we can now

determine the required positions of m+1,1 and m−1,1.
Since each m1,1 is located at x = 1 with a vertical displacement of y1,1, each

m1,1 is at a distance r =
√

12 + y2
1,1 from m0. And so we know that

Fm1,1 = G
m1,1m0

r2 = G
1
G · 1

12 + y2
1,1

=
1

12 + y2
1,1

and

cos θ1,1 =
1√

12 + y2
1,1

.
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Solving for 2F x
m1,1
= 2Fm1,1 cos θ1,1 = 1 is thus equivalent to solving

1(
12 + y2

1,1

)3/2 =
1
2
.

An approximate numerical solution has the pair m1,1 located at (1,−0.7664) and
(1, 0.7664).

Now consider the gravitationally equivalent decomposition for the target mass
m2, with target force F2 =

1
2 . This will be constructed using two pairs of objects,

m2,1 and m2,2, each pair exerting an aggregate horizontal force of 1
4 on m0. For the

first pair, as shown in figure 8(a), we want to find a vertical displacement y2,1 for
m+2,1 and m−2,1 such that 2F x

m2,1
= 1

4 . As before,

F x
m2,1
= Fm2,1 cos θm2,1

and we know that the pair of objects m2,1 is located at x = −2, so

Fm2,1 = G
m2,1m0

22 + y2
2,1

= G
1
G · 1

22 + y2
2,1

=
1

22 + y2
2,1

.

Now, cos θ2,1 = 2√
22+y2

2,1

, and so

F x
m2,1
=

2(
22 + y2

2,1

)3/2 .

Solving the equation 2F x
m2,1
= 1

4 for y2,1 yields y2,1 = ±2
√
−1 + 22/3. A numerical

approximation is y2,1 = ±1.53284.
To find the location of the second pair m2,2, we offset the x-position of this pair

by some amount ϵ towards the origin. Thus we have

Fm2,2 = G
m2,2m0

(2 − ϵ)2 + y2
2,2

=
1

(2 − ϵ)2 + y2
2,2

.

Since cos θ2,2 = 2−ϵ√
(2−ϵ)2+y2

2,2

, it follows that

F x
m2,2
=

2 − ϵ[
(2 − ϵ)2 + y2

2,2

]3/2 .
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m0 = 1

m+2,1
√

22 + y2
2,1

m−2,1

√
22 + y2

2,1

θ2,1

θ2,1

Fy
m2,1

Fy
m2,1

F x
m2,1

y2,1

y2,1

(a) Step 1. The masses m2,1 are positioned at
x = −2 at some initially unknown vertical
displacement y2,1.

m0 = 1

m2,1

m2,1

m2,2 √
(2 − ϵ)2 + y2

2,2

m2,2

√
(2 − ϵ)2 + y2

2,2

θ2,2

θ2,2

y2,2

y2,2

(b) Step 2. The masses m2,2 are positioned at
x = −2 + ϵ at some unknown vertical dis-
placement y2,2.

Figure 8: A diagram showing the relevant calculations for constructing the gravi-
tationally equivalent decomposition for the target mass m2.

If we assume that ϵ = 1
10 , a numerical solution to the equation 2F x

m2,2
= 1

4 is y2,2 =

±1.58939. This makes sense, for moving the pair of objects closer to m0 without
increasing the vertical displacement would generate a horizontal force greater than
1
4 , and so the vertical displacement has to be increased as an adjustment.

Now consider the target mass m3, located at x = 3. Going through a similar
process of reasoning as before, we find that Fm3,1 =

1
32+y2

3,1
, cos θ3,1 = 3√

32+y2
3,1

, and

so F x
m3,1
= 3(

32+y2
3,1

)3/2 . We solve for y3,1 which satisfies the equation 2F x
m3,1
= 1

9 .

(This is because the gravitationally equivalent decomposition will be constructed
with three pairs of objects, each pair of objects exerting a force of 1

9 on m0.)
Solving the equation numerically yields y3,1 ≈ ±2.29926. The equations for the
values of y3,2 and y3,3 take the form:

2F x
m3,2
= 2 ·

3 − ϵ[
(3 − ϵ)2 + y2

3,2

]3/2 =
1
9

and

2F x
m3,3
= 2 ·

3 − 2ϵ[
(3 − 2ϵ)2 + y2

3,2

]3/2 =
1
9

with approximate solutions y3,2 ≈ ±2.3574 and y3,3 ≈ ±2.40923, respectively.
In general, given object mN with mass N

G from the original construction of
section 2, we can find N pairs of objects, each with mass 1

G , which collectively
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m0 = 1

m3,1√
32 + y2

3,1

m3,1

√
32 + y2

3,1

θ3,1

θ3,1

Fy
m3,1

Fy
m3,1

F x
m3,1

y3,1

y3,1

(a) Step 1. The masses m3,1 are positioned at x = 3 at
some initially unknown vertical displacement y3,1.

m0 = 1

m3,1

m3,1

m3,2

m3,2

m3,3√
(3 − 2ϵ)2 + y2

3,3
y3,3

m3,3

√
(3 − 2ϵ)2 + y2

3,3

y3,3

θ3,3

θ3,3

(b) Step 2. The masses m3,3 are positioned at x = 3 − 2ϵ
at some unknown vertical displacement y3,3.

Figure 9: A diagram showing some of the relevant calculations for constructing
the gravitationally equivalent decomposition for the target mass m3.
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exert a gravitational force equivalent to FN on m0. The y-positions of the mN,k,
for k = 1, . . . ,N, are obtained by solving for yN,k in an equation of the following
generic form:

2F x
mN,k
= 2 ·

N − (k − 1)ϵ[
(N − (k − 1)ϵ)2 + y2

N,k

]3/2 =
1

N2 . (2)

What changes if we construct the gravitationally equivalent decomposition
with a smaller source mass for each pair of objects? Suppose we were to use
ms =

1
10nG , for some integer n, with each pair of objects exerting an external

force of 1
10n on m0. This will require using 10n pairs of objects, and will require

selecting an appropriately small value of ϵ (taking ϵ = 1
10n will work). In this case,

equation (2) takes the following form:

2F x
mN,k
= 2 ·

1
10n (N − (k − 1)ϵ)[

(N − (k − 1)ϵ)2 + y2
N,k

]3/2 =
1

10n · N2 . (3)

When n = 1 and ϵ = 1
10 , this yields the gravitationally equivalent decomposition

shown in figure 6(a).
One further change can be made in order to generate a gravitationally equiva-

lent decomposition that approximates continuous curves: suppose that we pick a
source mass of ms =

1
10nG but instead of positioning pairs of objects, each having

mass ms, we position pairs of objects each with mass 1
2ms + δ for some very small

δ > 0. When δ is very small, this means the vertical displacement around the
x-axis for m+N,1 and m−N,1 will be very tiny. In this case, equation (2) takes the form:

2F x
mN,k
= 2 ·

[
1
2 ·

1
10n + δ

]
(N − (k − 1)ϵ)[

(N − (k − 1)ϵ)2 + y2
N,k

]3/2 =
1

10n · N2 . (4)

Setting n = 2, ϵ = 1
100 , and δ = 10−6 yields the gravitationally equivalent decom-

position shown in figure 6(b).

B Approximating Seeliger’s paradox in a discrete limit

Here we show how a suitable modification of the original construction yields, in
the limit, ever-greater discrete approximations of a uniform mass distribution of
the kind underlying Seeliger’s paradox. To do this, we will construct a sequence of
discrete incompleteness results ⟨Dn⟩

∞
n=0, and show that the distribution of particles

in two dimensions is such that, for an open ball B of some radius r, the amount of
mass contained in B, denoted m(B), converges to the measure of B, denoted µ(B),
as n→ ∞.
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First, notice that for any positive integer n that if we place a unit mass m0 at
the origin and objects of mass mk =

k
10n·G at the points xk = (−1)k−1 · k

10n we obtain
a scaled version of the original problem. The force contribution F(n)

k of the kth

object is

F(n)
k = G

m0mk(
k

10n

)2 = G
1 · k

10nG
k2

102n

=
10n

k
.

And so when we calculate the total force acting on the mass m0 we get the sum

F(n) =

∞∑
k=1

=
10n

1
−

10n

2
+

10n

3
−

10n

4
+

10n

5
−

10n

6
+ · · ·

which is the conditionally convergent series obtained by multiplying the alternat-
ing harmonic series by a factor of 10n, and so the incompleteness result obtains.
The difference between the original incompleteness result and this version is that
the space between the objects is scaled by a factor of 10−n.

Second, notice that for any rescaled version of the incompleteness result it re-
mains possible to construct a gravitationally equivalent decomposition, using (i) a
sufficiently small source mass, say ms =

1
102nG , (ii) an appropriately chosen value

of ϵ (we could take ϵ = 1
102n ), and (iii) pairs of objects with mass 1

2 · ms + δ, as
discussed at the end of appendix A, such that the arcs formed will increasingly ap-
proximate a continuous curve, as shown in figure 6(b). Importantly, these discrete
curve approximations will become arbitrarily close together as n increases.

Third, notice that, as shown in figure 10, for each mass mk we can find a com-
pact set S k which contains all of the point masses in the gravitationally equivalent
decomposition of mk with the property that the area of S k, denoted µ(S k), is pro-
portional to mk. In particular, it is possible to choose all of the S k such that there
exists some common constant c > 0 such that µ(S k) = c · mk, for all k. Moreover,
we can choose the S k such that all of the S k are pairwise disjoint. (This is because
the amount of mass that appears at location xk only increases linearly as we move
from xk to xk+1 but area increases as the square of the distance.) Since the in-
completeness result does not change if we rescale of the masses mk by a common
positive constant, we can assume, without loss of generality, that µ(S k) = mk, for
all k.

Given these three observations, we construct a sequence of discrete incom-
pleteness results which increasingly approximate a uniform mass distribution, in
the limit, as follows. Let ⟨Dn⟩

∞
n=0 be the sequence of mass distributions defined as

follows (superscripts appearing in parentheses are indexes, not powers):

1. The position of the target masses in Dn is given by x(n)
k = (−1)k−1 · k

10n ,
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S 1

S 3

S 5

S 2

S 4

x

y

−4 −2 1 3 5

Figure 10: A family of disjoint closed sets,

2. The target mass m(n)
k =

k
cn10nG , where the constant cn > 0 is chosen to ensure

that µ
(
S (n)

k

)
= mk,

3. The gravitationally equivalent decomposition of the target mass in Dn is
performed with a source mass of m(n)

s =
1

102nG and pairs of objects having a
mass of 1

2 · m
(n)
s + δn, where δn → 0 as n→ ∞.

Let B ⊆ R2 be an open ball of some radius r. For any particular n, each of
the S (n)

k is measurable and hence
⋃

k

(
B ∩ S (n)

k

)
is measurable. Since the crescents

S (n)
k get arbitrarily close together as n → ∞, the measure of

⋃
k

(
B ∩ S (n)

k

)
will

approach µ(B) in the limit. Since, for all n and k, we have µ
(
S (n)

k

)
= m

(
S (n)

k

)
,

the amount of mass contained in the open ball B will approach the measure of
B. Since B was an arbitrary open ball, and measure is preserved under transla-
tion, the discrete distribution of mass increasingly approximates a uniform mass
distribution as n→ ∞.

C From two to three dimensions

The construction given only concerns the positioning of particles within a two-
dimensional space. Since Seeliger’s original paper concerned a uniform mass
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x

y

z

y1,1

y1,1

m1,1

m1,1

Unit mass at the origin
Mass m1

(a) Constructing a simple gravitation-
ally equivalent decomposition in
the xz-plane with two objects each
having mass m1,1 equal to m1.

x

y

z

Unit mass at the originUnit mass at the origin
Mass m1

(b) Constructing a more complex
gravitationally equivalent decom-
position in three dimensions using
ten pairs of objects, each object
with mass equal to 1

10G .

Figure 11: Performing a gravitationally equivalent decomposition for m1 in three
dimensions.

distribution in three-dimensional space, it is worth showing how the construction
can be extended to three dimensions. Once it is seen how to do this, it will be
clear how to modify the proof given in Appendix B.

To begin, consider performing a gravitationally equivalent decomposition of
m1 =

1
G using two objects of the same mass. (In the notation established earlier,

this means that m1,1 = m1 =
1
G .) Figure 11(a) shows what the arrangement of

masses would look like if they were positioned at x = 1 but shifted the appropriate
amount ±y1,1 along the y-axis.

Now, though, suppose that instead of taking m1,1 to equal m1 we instead choose
m1,1 =

1
10G . In this case, we would have Fm1,1 =

1
20 and so a single pair of masses

as in figure 11(a) would only contribute one-tenth of the original force of m1 on
m0. However, adding ten pairs of masses, rotated around the x-axis at the same
distance d, as shown in figure 11(b), would result in a net gravitational force equal
to that exerted by m1 on m0. If we instead chose m1,1 =

1
100G , we would need to use

one hundred pairs of masses positioned in a ring around the x-axis. As m1,1 → 0,
we get ever-closer discrete approximations to a continuous distribution of mass
along a ring, with radius y1,1, centered at x = 1.

This construction can easily be extended to handle the other cases discussed
earlier in this paper. Whereas previously we only considered positioning a pair
of objects, each with mass mn,k, at symmetric positions above and below the x-
axis, now we also utilise the rotational symmetry around the x-axis to position
additional pairs of objects, spreading into three dimensions. The only additional
change when we extend the construction into three dimensions is that the value of
the mass mn,k needs to be reduced because we are introducing additional pairs of
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x

y

z

Mass m1

Unit mass at the origin

Mass m2

Figure 12: The construction of a gravitationally equivalent decomposition, in
three dimensions, for the mass m2. Here, we begin with two pairs of masses
positioned in the xy-plane, as shown in figure 3, but then position nine additional
pairs of masses rotated around the x-axis. Note that in order to make each pair of
masses visible in the diagram, they are not drawn to scale (recall that each mass in
a pair has the value 1

10G ). A ring is drawn in order to make the rotational symmetry
around the x-axis more clear.

objects rotated around the x-axis, along the lines illustrated in figure 11. Figure 12
shows the gravitationally equivalent decompositions for both m1 and m2.

Given this, the proof given in the previous section needs to be modified so as
to have each of the S k be three-dimensional ‘shells’ containing the gravitationally
equivalent decomposition, rather than two-dimensional strips. It also needs to be
the case that the constant cn is chosen so as to ensure that the volume of each of the
S k equals the target mass m(n)

k . Otherwise the essential details remain the same.
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